Electron paramagnetic resonance study of the active site of copper-substituted human glyoxalase I. 1987

S Sellin, and L E Eriksson, and B Mannervik
Department of Biochemistry, Arrhenius Laboratory, University of Stockholm, Sweden.

Zn2+ in native glyoxalase I from human erythrocytes can be replaced by Cu2+, giving an inactive enzyme. Cu2+ was demonstrated to compete with the activating metals Zn2+ and Mn2+, indicating a common binding site on the enzyme for these metal ions. The electron paramagnetic resonance (EPR) spectra of 63Cu(II) glyoxalase I at 77 K and of its complexes with glutathione and some glutathione derivatives are characteristic of Cu2+ in an elongated octahedral coordination (g parallel = 2.34, g perpendicular = 2.09, and A parallel = 14.2 mT). The low-field bands of the free enzyme are asymmetric and become symmetrical upon addition of glutathione or S-(p-bromobenzyl)glutathione but not S-(D-lactoyl)glutathione. The results indicate the existence of two conformations of Cu(II) glyoxalase I, in agreement with the effects caused by these compounds on the protein fluorescence. The copper hyperfine line at low field in the EPR spectrum of the S-(p-bromobenzyl)glutathione complex of 63Cu(II) glyoxalase I shows a triplet structure, indicative of coupling to one nitrogen ligand in the equatorial plane. Similar results were obtained with the glutathione complex. By addition of the spectrum of the S-(p-bromobenzyl)glutathione complex and a spectrum corresponding to two nitrogen ligands with two different coupling constants, a good fit was obtained for the low-field region of the asymmetric spectrum of free 63Cu(II) glyoxalase I. The first two spectra are assumed to correspond to two separate conformational states of the enzyme. The results demonstrate that at least one nitrogen ligand is involved in the binding of Cu2+.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007791 Lactoylglutathione Lyase An enzyme that catalyzes the interconversion of methylglyoxal and lactate, with glutathione serving as a coenzyme. EC 4.4.1.5. Glyoxalase I,Lactoyl Glutathione Lyase,Methylglyoxalase,Glutathione Lyase, Lactoyl,Lyase, Lactoyl Glutathione,Lyase, Lactoylglutathione
D008190 Lyases A class of enzymes that catalyze the cleavage of C-C, C-O, and C-N, and other bonds by other means than by hydrolysis or oxidation. (Enzyme Nomenclature, 1992) EC 4. Desmolase,Desmolases,Lyase
D008345 Manganese A trace element with atomic symbol Mn, atomic number 25, and atomic weight 54.94. It is concentrated in cell mitochondria, mostly in the pituitary gland, liver, pancreas, kidney, and bone, influences the synthesis of mucopolysaccharides, stimulates hepatic synthesis of cholesterol and fatty acids, and is a cofactor in many enzymes, including arginase and alkaline phosphatase in the liver. (From AMA Drug Evaluations Annual 1992, p2035)
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D003300 Copper A heavy metal trace element with the atomic symbol Cu, atomic number 29, and atomic weight 63.55. Copper-63,Copper 63
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining

Related Publications

S Sellin, and L E Eriksson, and B Mannervik
November 1978, The Journal of biological chemistry,
S Sellin, and L E Eriksson, and B Mannervik
May 1996, Journal of inorganic biochemistry,
S Sellin, and L E Eriksson, and B Mannervik
April 1980, Biochemistry,
S Sellin, and L E Eriksson, and B Mannervik
July 1974, Biochimica et biophysica acta,
S Sellin, and L E Eriksson, and B Mannervik
March 2019, Journal of biological inorganic chemistry : JBIC : a publication of the Society of Biological Inorganic Chemistry,
S Sellin, and L E Eriksson, and B Mannervik
November 1997, The Biochemical journal,
S Sellin, and L E Eriksson, and B Mannervik
July 2014, Bioorganic & medicinal chemistry,
S Sellin, and L E Eriksson, and B Mannervik
July 2001, Journal of the American Chemical Society,
S Sellin, and L E Eriksson, and B Mannervik
June 1977, Biochimica et biophysica acta,
S Sellin, and L E Eriksson, and B Mannervik
June 1964, Doklady Akademii nauk SSSR,
Copied contents to your clipboard!