Ribonucleotide reductase of Brevibacterium ammoniagenes is a manganese enzyme. 1988

A Willing, and H Follmann, and G Auling
Fachbereich Chemie der Philipps-Universität Marburg, Federal Republic of Germany.

Ribonucleotide reduction and not DNA replication is the site for the specific manganese requirement of DNA synthesis and cell growth in the coryneform bacterium Brevibacterium ammoniagenes. To characterize the metal effect we have isolated and purified ribonucleoside-diphosphate reductase from overproducing bacteria that were first deprived of and then reactivated by manganese ions. Purification on columns of Sephacryl S400, DEAE-cellulose and hydroxyapatite provided an apparently homogeneous enzyme consisting of two protein subunits. These were characterized by affinity chromatography on 2',5'-ADP-Sepharose as nucleotide-binding protein B1 (Mr = 80,000) and catalytic protein B2 (Mr = 100,000, composed of two Mr = 50,000 polypeptides), which were both necessary for activity. In vitro the purified enzyme does not require added metal ions except for an unspecific, twofold activity increase observed in the presence of Mg2+ and other divalent cations. Enzyme activity is inhibited by hydroxyurea (I50 = 2.5 mM). The electronic spectrum with maxima around 455 nm and 485 nm closely resembles that of manganese(III)-containing pseudocatalase and of oxo-bridged binuclear Mn(III) model complexes. Denaturation of the enzyme in trichloroacetic acid liberated an equimolar amount of Mn(II) which was detected by EPR spectroscopy. It was not possible to remove and reintroduce metal ions without loss of enzyme activity. Manganese-deficient cell cultures were also grown in the presence of 54MnCl2. Ribonucleotide reductase activity and radioactivity cochromatographed in several systems. Non-denaturing polyacrylamide gel electrophoresis showed that protein subunit B2 was specifically 54Mn-labeled. All these properties suggest that the ribonucleotide reductase of B. ammoniagenes is a manganese-containing analog of the non-heme-iron-containing reductases of Escherichia coli and eukaryotes.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008345 Manganese A trace element with atomic symbol Mn, atomic number 25, and atomic weight 54.94. It is concentrated in cell mitochondria, mostly in the pituitary gland, liver, pancreas, kidney, and bone, influences the synthesis of mucopolysaccharides, stimulates hepatic synthesis of cholesterol and fatty acids, and is a cofactor in many enzymes, including arginase and alkaline phosphatase in the liver. (From AMA Drug Evaluations Annual 1992, p2035)
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D001951 Brevibacterium A gram-positive organism found in dairy products, fresh and salt water, marine organisms, insects, and decaying organic matter.
D002845 Chromatography Techniques used to separate mixtures of substances based on differences in the relative affinities of the substances for mobile and stationary phases. A mobile phase (fluid or gas) passes through a column containing a stationary phase of porous solid or liquid coated on a solid support. Usage is both analytical for small amounts and preparative for bulk amounts. Chromatographies
D002846 Chromatography, Affinity A chromatographic technique that utilizes the ability of biological molecules, often ANTIBODIES, to bind to certain ligands specifically and reversibly. It is used in protein biochemistry. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Chromatography, Bioaffinity,Immunochromatography,Affinity Chromatography,Bioaffinity Chromatography
D002848 Chromatography, DEAE-Cellulose A type of ion exchange chromatography using diethylaminoethyl cellulose (DEAE-CELLULOSE) as a positively charged resin. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) DEAE-Cellulose Chromatography,Chromatography, DEAE Cellulose,DEAE Cellulose Chromatography
D006882 Hydroxyapatites A group of compounds with the general formula M10(PO4)6(OH)2, where M is barium, strontium, or calcium. The compounds are the principal mineral in phosphorite deposits, biological tissue, human bones, and teeth. They are also used as an anticaking agent and polymer catalysts. (Grant & Hackh's Chemical Dictionary, 5th ed) Hydroxyapatite Derivatives,Derivatives, Hydroxyapatite
D012264 Ribonucleotide Reductases Ribonucleotide Reductase,Reductase, Ribonucleotide,Reductases, Ribonucleotide
D046911 Macromolecular Substances Compounds and molecular complexes that consist of very large numbers of atoms and are generally over 500 kDa in size. In biological systems macromolecular substances usually can be visualized using ELECTRON MICROSCOPY and are distinguished from ORGANELLES by the lack of a membrane structure. Macromolecular Complexes,Macromolecular Compounds,Macromolecular Compounds and Complexes,Complexes, Macromolecular,Compounds, Macromolecular,Substances, Macromolecular

Related Publications

A Willing, and H Follmann, and G Auling
February 1998, The Journal of biological chemistry,
A Willing, and H Follmann, and G Auling
July 1987, Journal of bacteriology,
A Willing, and H Follmann, and G Auling
August 1983, Science (New York, N.Y.),
A Willing, and H Follmann, and G Auling
August 2000, The Journal of biological chemistry,
A Willing, and H Follmann, and G Auling
December 2004, Journal of computational chemistry,
A Willing, and H Follmann, and G Auling
September 1975, Applied microbiology,
Copied contents to your clipboard!