MicroRNA-1284 Inhibits Cell Viability and Induces Apoptosis of Ovarian Cancer Cell Line OVCAR3. 2016

Changqing Pan, and Dan Wang, and Yao Zhang, and Wenliang Yu
Department of Obstetrics and Gynecology, Mianyang Central Hospital, Mianyang, Sichuan, P.R. China.

Ovarian cancer is a malignancy with high mortality among women. Multiple reports show that microRNAs (miRs) act as regulators in ovarian cancer inhibition, while the role of miR-1284 in ovarian cancer is still unknown. This study aimed to investigate the effects of miR-1284 on ovarian cancer cells. Human ovarian cancer cell line OVCAR3 was cultured and transfected with miR-1284 mimics, inhibitors, or control. Viability and apoptosis of transfected cells were then determined by MTT assay, BrdU assay, and flow cytometry. Expression changes of p27, p21, and PI3K/Akt pathway-related proteins were measured by Western blot. Results showed that miR-1284 overexpression suppressed cell viability while increasing the apoptosis in OVCAR3 cells. Moreover, the expression level of p27 was upregulated by miR-1284 overexpression. Furthermore, miR-1284 overexpression and Akt inhibitor GSK690693 downregulated the levels of p-Akt and Bcl-2 while upregulating the levels of Bax and caspase 3. However, miR-1284 suppression attenuated the regulatory effects of GSK690693 on these proteins. In conclusion, miR-1284 could inhibit cell viability via regulating the expression of p27 and induce apoptosis via regulating the PI3K/Akt pathway in OVCAR3 cells.

UI MeSH Term Description Entries
D010051 Ovarian Neoplasms Tumors or cancer of the OVARY. These neoplasms can be benign or malignant. They are classified according to the tissue of origin, such as the surface EPITHELIUM, the stromal endocrine cells, and the totipotent GERM CELLS. Cancer of Ovary,Ovarian Cancer,Cancer of the Ovary,Neoplasms, Ovarian,Ovary Cancer,Ovary Neoplasms,Cancer, Ovarian,Cancer, Ovary,Cancers, Ovarian,Cancers, Ovary,Neoplasm, Ovarian,Neoplasm, Ovary,Neoplasms, Ovary,Ovarian Cancers,Ovarian Neoplasm,Ovary Cancers,Ovary Neoplasm
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014162 Transfection The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES. Transfections
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D015536 Down-Regulation A negative regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins. Receptor Down-Regulation,Down-Regulation (Physiology),Downregulation,Down Regulation,Down-Regulation, Receptor
D015854 Up-Regulation A positive regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins. Receptor Up-Regulation,Upregulation,Up-Regulation (Physiology),Up Regulation
D015972 Gene Expression Regulation, Neoplastic Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in neoplastic tissue. Neoplastic Gene Expression Regulation,Regulation of Gene Expression, Neoplastic,Regulation, Gene Expression, Neoplastic
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis

Related Publications

Changqing Pan, and Dan Wang, and Yao Zhang, and Wenliang Yu
January 2017, Biotechnology letters,
Changqing Pan, and Dan Wang, and Yao Zhang, and Wenliang Yu
September 2017, Molecular medicine reports,
Changqing Pan, and Dan Wang, and Yao Zhang, and Wenliang Yu
August 2017, Oncology letters,
Changqing Pan, and Dan Wang, and Yao Zhang, and Wenliang Yu
January 2017, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas,
Changqing Pan, and Dan Wang, and Yao Zhang, and Wenliang Yu
March 2001, Biochemical and biophysical research communications,
Changqing Pan, and Dan Wang, and Yao Zhang, and Wenliang Yu
October 2020, International journal of molecular medicine,
Changqing Pan, and Dan Wang, and Yao Zhang, and Wenliang Yu
May 2012, BMC medical genomics,
Changqing Pan, and Dan Wang, and Yao Zhang, and Wenliang Yu
January 2021, Biotechnic & histochemistry : official publication of the Biological Stain Commission,
Changqing Pan, and Dan Wang, and Yao Zhang, and Wenliang Yu
November 2019, International journal of molecular medicine,
Changqing Pan, and Dan Wang, and Yao Zhang, and Wenliang Yu
March 2024, International journal of molecular medicine,
Copied contents to your clipboard!