Regulation of expression of the cytochrome d terminal oxidase in Escherichia coli is transcriptional. 1988

C D Georgiou, and T J Dueweke, and R B Gennis
Department of Biochemistry, University of Illinois, Urbana 61801.

The cytochrome d complex is one of the two terminal oxidases in the aerobic respiratory system of Escherichia coli. This enzyme is not present in cells grown with high levels of dissolved oxygen in the culture medium but accumulates after mid-exponential growth, reaching high levels in stationary-phase cells. In this study, the transcriptional activity of the cyd operon, encoding the two subunits of the enzyme, was examined under a variety of growth conditions. This was accomplished by the use of a chromosomal operon fusion, cyd-lacZ, generated in vivo by a lambda plac-Mu hopper bacteriophage and also by the use of a cyd-lacZ protein fusion created in vitro on a plasmid, transferred onto a lambda transducing phage, and examined as a single-copy lysogen. Transcription of the gene fusions was monitored by determination of beta-galactosidase activity. The data clearly show that cyd is transcriptionally regulated and that induction is observed when the culture reaches a sufficient cell density so as to substantially reduce the steady-state levels of dissolved oxygen. The transcriptional activity is also regulated by other growth conditions, including the carbon source. The turn-on of cyd under semianaerobic conditions does not require the fnr gene product, cyclic AMP, or the cyclic AMP-binding protein.

UI MeSH Term Description Entries
D009876 Operon In bacteria, a group of metabolically related genes, with a common promoter, whose transcription into a single polycistronic MESSENGER RNA is under the control of an OPERATOR REGION. Operons
D010088 Oxidoreductases The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9) Dehydrogenases,Oxidases,Oxidoreductase,Reductases,Dehydrogenase,Oxidase,Reductase
D010582 Bacteriophage lambda A temperate inducible phage and type species of the genus lambda-like viruses, in the family SIPHOVIRIDAE. Its natural host is E. coli K12. Its VIRION contains linear double-stranded DNA with single-stranded 12-base 5' sticky ends. The DNA circularizes on infection. Coliphage lambda,Enterobacteria phage lambda,Phage lambda,lambda Phage
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D003573 Cytochrome b Group Cytochromes (electron-transporting proteins) with protoheme (HEME B) as the prosthetic group. Cytochromes Type b,Cytochromes, Heme b,Group, Cytochrome b,Heme b Cytochromes,Type b, Cytochromes,b Cytochromes, Heme,b Group, Cytochrome
D003580 Cytochromes Hemeproteins whose characteristic mode of action involves transfer of reducing equivalents which are associated with a reversible change in oxidation state of the prosthetic group. Formally, this redox change involves a single-electron, reversible equilibrium between the Fe(II) and Fe(III) states of the central iron atom (From Enzyme Nomenclature, 1992, p539). The various cytochrome subclasses are organized by the type of HEME and by the wavelength range of their reduced alpha-absorption bands. Cytochrome
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression

Related Publications

C D Georgiou, and T J Dueweke, and R B Gennis
January 1986, Methods in enzymology,
C D Georgiou, and T J Dueweke, and R B Gennis
June 1983, Journal of bacteriology,
C D Georgiou, and T J Dueweke, and R B Gennis
November 1993, FEBS letters,
C D Georgiou, and T J Dueweke, and R B Gennis
June 1984, The Journal of biological chemistry,
C D Georgiou, and T J Dueweke, and R B Gennis
September 1983, The Journal of biological chemistry,
C D Georgiou, and T J Dueweke, and R B Gennis
June 1984, The Journal of biological chemistry,
C D Georgiou, and T J Dueweke, and R B Gennis
October 1991, Journal of bacteriology,
C D Georgiou, and T J Dueweke, and R B Gennis
July 1990, Biochimica et biophysica acta,
Copied contents to your clipboard!