Evidence against proton pump activity by cytochrome c oxidase of Pseudomonas AM1. 1987

N Sone, and M Sekimachi, and Y Fukumori, and T Yamanaka
Department of Biochemistry, Jichi Medical School, Tochigi.

Proteoliposomes reconstituted from purified cytochrome c oxidase of Pseudomonas AM1 and from a heptyl beta-D-thioglucoside-extract of its membranes showed respiratory control but did not show H+ pumping upon a pulse with reduced cytochrome c. The stoichiometries of respiration-dependent H+ translocation in the resting cells respiring ascorbate via N,N,N',N'-tetramethyl-p-phenylenediamine were measured by the oxygen-pulse and initial rate methods. The apparent H+/O ratio of about 2 was due to 2H+ release from the hydrogen-donating substrate. These results strongly suggested that Pseudomonas AM1 does not pump H+ intrinsically, although the enzyme catalyzes electron transfer across the membranes.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D011522 Protons Stable elementary particles having the smallest known positive charge, found in the nuclei of all elements. The proton mass is less than that of a neutron. A proton is the nucleus of the light hydrogen atom, i.e., the hydrogen ion. Hydrogen Ions,Hydrogen Ion,Ion, Hydrogen,Ions, Hydrogen,Proton
D011549 Pseudomonas A genus of gram-negative, aerobic, rod-shaped bacteria widely distributed in nature. Some species are pathogenic for humans, animals, and plants. Chryseomonas,Pseudomona,Flavimonas
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D003576 Electron Transport Complex IV A multisubunit enzyme complex containing CYTOCHROME A GROUP; CYTOCHROME A3; two copper atoms; and 13 different protein subunits. It is the terminal oxidase complex of the RESPIRATORY CHAIN and collects electrons that are transferred from the reduced CYTOCHROME C GROUP and donates them to molecular OXYGEN, which is then reduced to water. The redox reaction is simultaneously coupled to the transport of PROTONS across the inner mitochondrial membrane. Cytochrome Oxidase,Cytochrome aa3,Cytochrome-c Oxidase,Cytochrome Oxidase Subunit III,Cytochrome a,a3,Cytochrome c Oxidase Subunit VIa,Cytochrome-c Oxidase (Complex IV),Cytochrome-c Oxidase Subunit III,Cytochrome-c Oxidase Subunit IV,Ferrocytochrome c Oxygen Oxidoreductase,Heme aa3 Cytochrome Oxidase,Pre-CTOX p25,Signal Peptide p25-Subunit IV Cytochrome Oxidase,Subunit III, Cytochrome Oxidase,p25 Presequence Peptide-Cytochrome Oxidase,Cytochrome c Oxidase,Cytochrome c Oxidase Subunit III,Cytochrome c Oxidase Subunit IV,Oxidase, Cytochrome,Oxidase, Cytochrome-c,Signal Peptide p25 Subunit IV Cytochrome Oxidase,p25 Presequence Peptide Cytochrome Oxidase
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic

Related Publications

N Sone, and M Sekimachi, and Y Fukumori, and T Yamanaka
May 1998, Journal of molecular evolution,
N Sone, and M Sekimachi, and Y Fukumori, and T Yamanaka
April 1978, FEBS letters,
N Sone, and M Sekimachi, and Y Fukumori, and T Yamanaka
October 2010, Proceedings of the National Academy of Sciences of the United States of America,
N Sone, and M Sekimachi, and Y Fukumori, and T Yamanaka
April 1985, The Biochemical journal,
N Sone, and M Sekimachi, and Y Fukumori, and T Yamanaka
March 1977, Nature,
N Sone, and M Sekimachi, and Y Fukumori, and T Yamanaka
April 2006, Nature,
N Sone, and M Sekimachi, and Y Fukumori, and T Yamanaka
January 1990, Biochemistry,
N Sone, and M Sekimachi, and Y Fukumori, and T Yamanaka
August 2009, Proceedings of the National Academy of Sciences of the United States of America,
N Sone, and M Sekimachi, and Y Fukumori, and T Yamanaka
April 2004, Biochimica et biophysica acta,
N Sone, and M Sekimachi, and Y Fukumori, and T Yamanaka
January 1988, Molecular aspects of medicine,
Copied contents to your clipboard!