Herpes simplex virus virion host shutoff function. 1988

A D Kwong, and J A Kruper, and N Frenkel
Department of Molecular Genetics and Cell Biology, University of Chicago, Illinois 60637.

Herpes simplex virus (HSV) virions contain one or more functions which mediate the shutoff of host protein synthesis and the degradation of host mRNA. HSV type 1 (HSV-1) mutants deficient in the virion shutoff of host protein synthesis (vhs mutants) were isolated and were found to be defective in their ability to degrade host mRNA. Furthermore, it was found that viral mRNAs in cells infected with the vhs 1 mutant have a significantly longer functional half-life than viral mRNAs in wild-type virus-infected cells. In the present study we have mapped the vhs1 mutation affecting the virion shutoff of host protein synthesis to a 265-base-pair NruI-XmaIII fragment spanning map coordinates 0.604 to 0.606 of the HSV-1 genome. The mutation(s) affecting the functional half-lives of host mRNA as well as the alpha (immediate-early), beta (early), and gamma (late) viral mRNAs were also mapped within this 265-base-pair fragment. Thus, the shutoff of host protein synthesis is most likely mediated by the same function which decreases the half-life of viral mRNA. The shorter half-life of infected-cell mRNAs may allow a more rapid modulation of viral gene expression in response to changes in the transcription of viral genes. Interestingly, the vhs1 mutation of HSV-1 maps within a region which overlaps the Bg/II-N sequences of HSV-2 DNA shown previously to transform cells in culture. The possible relationship between the transformation and host shutoff functions are discussed.

UI MeSH Term Description Entries
D007739 L Cells A cultured line of C3H mouse FIBROBLASTS that do not adhere to one another and do not express CADHERINS. Earle's Strain L Cells,L Cell Line,L Cells (Cell Line),L-Cell Line,L-Cells,L-Cells, Cell Line,L929 Cell Line,L929 Cells,NCTC Clone 929 Cells,NCTC Clone 929 of Strain L Cells,Strain L Cells,Cell Line L-Cell,Cell Line L-Cells,Cell Line, L,Cell Line, L929,Cell Lines, L,Cell, L,Cell, L (Cell Line),Cell, L929,Cell, Strain L,Cells, L,Cells, L (Cell Line),Cells, L929,Cells, Strain L,L Cell,L Cell (Cell Line),L Cell Lines,L Cell, Strain,L Cells, Cell Line,L Cells, Strain,L-Cell,L-Cell Lines,L-Cell, Cell Line,L929 Cell,Strain L Cell
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006207 Half-Life The time it takes for a substance (drug, radioactive nuclide, or other) to lose half of its pharmacologic, physiologic, or radiologic activity. Halflife,Half Life,Half-Lifes,Halflifes
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D012367 RNA, Viral Ribonucleic acid that makes up the genetic material of viruses. Viral RNA
D014176 Protein Biosynthesis The biosynthesis of PEPTIDES and PROTEINS on RIBOSOMES, directed by MESSENGER RNA, via TRANSFER RNA that is charged with standard proteinogenic AMINO ACIDS. Genetic Translation,Peptide Biosynthesis, Ribosomal,Protein Translation,Translation, Genetic,Protein Biosynthesis, Ribosomal,Protein Synthesis, Ribosomal,Ribosomal Peptide Biosynthesis,mRNA Translation,Biosynthesis, Protein,Biosynthesis, Ribosomal Peptide,Biosynthesis, Ribosomal Protein,Genetic Translations,Ribosomal Protein Biosynthesis,Ribosomal Protein Synthesis,Synthesis, Ribosomal Protein,Translation, Protein,Translation, mRNA,mRNA Translations

Related Publications

A D Kwong, and J A Kruper, and N Frenkel
November 1989, Journal of virology,
A D Kwong, and J A Kruper, and N Frenkel
May 1989, Journal of virology,
A D Kwong, and J A Kruper, and N Frenkel
June 2008, Journal of virology,
A D Kwong, and J A Kruper, and N Frenkel
March 2002, Journal of virology,
A D Kwong, and J A Kruper, and N Frenkel
May 1996, The EMBO journal,
A D Kwong, and J A Kruper, and N Frenkel
January 1991, Journal of virology,
A D Kwong, and J A Kruper, and N Frenkel
April 2000, Journal of virology,
A D Kwong, and J A Kruper, and N Frenkel
October 2014, Journal of virology,
A D Kwong, and J A Kruper, and N Frenkel
December 2013, Journal of virology,
A D Kwong, and J A Kruper, and N Frenkel
June 2010, Journal of virology,
Copied contents to your clipboard!