Mechanisms of synthesis of virion proteins from the functionally bigenic late mRNAs of simian virus 40. 1988

S A Sedman, and J E Mertz
McArdle Laboratory for Cancer Research, University of Wisconsin, Madison 53706.

The late 19S RNAs of simian virus 40 (SV40) are functionally polycistronic, i.e., all encode both VP2 and VP3. The VP3-coding sequences are situated in the same reading frame as the VP2-coding sequences, within the carboxy-terminal two-thirds of the VP2-coding sequences. To test whether VP3 is produced by proteolytic processing of VP2, we introduced a variety of deletion and insertion mutations within the amino-terminal end of the VP2-coding sequences. Genetic and biochemical analysis of the proteins synthesized in cells transfected with these mutants indicated that VP2 and VP3 were synthesized independently of each other. A leaky scanning model for the synthesis of VP3 was tested by the insertion of a strong initiation signal (CCAACATGG) upstream of the VP3-coding sequences. When the signal was placed in the same reading frame as VP3, synthesis of VP3 was reduced by a factor of 10 to 20, whereas synthesis of the expected VP3-related fusion protein occurred at a rate similar to that observed for VP3 in cells transfected with wild-type SV40 DNA. Insertion of this strong initiation signal at the same site, but in a different reading frame, resulted in the synthesis of VP3 at one-third of the wild-type rate. Mutation of the VP2 initiator AUG resulted in a small but reproducible (1.6-fold) increase in VP3 accumulation. From these experiments we conclude that (i) VP3 is synthesized predominantly by independent initiation of translation via a leaky scanning mechanism, rather than by proteolytic processing of VP2 or direct internal initiation of translation; (ii) a strong initiation signal 5' of the VP3-coding sequences can significantly inhibit synthesis of VP3, but does not act as an absolute barrier to scanning ribosomes; (iii) approximately 70% of scanning ribosomes bypass the VP2 initiator AUG, which is present in a weak context (GGUCCAUGG), and initiate at the VP3 initiation signal located downstream; and (iv) reinitiation of translation appears to occur on the SV40 late 19S mRNAs at an efficiency of 25 to 50%.

UI MeSH Term Description Entries
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D012045 Regulatory Sequences, Nucleic Acid Nucleic acid sequences involved in regulating the expression of genes. Nucleic Acid Regulatory Sequences,Regulatory Regions, Nucleic Acid (Genetics),Region, Regulatory,Regions, Regulatory,Regulator Regions, Nucleic Acid,Regulatory Region,Regulatory Regions
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D012367 RNA, Viral Ribonucleic acid that makes up the genetic material of viruses. Viral RNA
D013539 Simian virus 40 A species of POLYOMAVIRUS originally isolated from Rhesus monkey kidney tissue. It produces malignancy in human and newborn hamster kidney cell cultures. SV40 Virus,Vacuolating Agent,Polyomavirus macacae,SV 40 Virus,SV 40 Viruses,SV40 Viruses,Vacuolating Agents
D014176 Protein Biosynthesis The biosynthesis of PEPTIDES and PROTEINS on RIBOSOMES, directed by MESSENGER RNA, via TRANSFER RNA that is charged with standard proteinogenic AMINO ACIDS. Genetic Translation,Peptide Biosynthesis, Ribosomal,Protein Translation,Translation, Genetic,Protein Biosynthesis, Ribosomal,Protein Synthesis, Ribosomal,Ribosomal Peptide Biosynthesis,mRNA Translation,Biosynthesis, Protein,Biosynthesis, Ribosomal Peptide,Biosynthesis, Ribosomal Protein,Genetic Translations,Ribosomal Protein Biosynthesis,Ribosomal Protein Synthesis,Synthesis, Ribosomal Protein,Translation, Protein,Translation, mRNA,mRNA Translations
D014764 Viral Proteins Proteins found in any species of virus. Gene Products, Viral,Viral Gene Products,Viral Gene Proteins,Viral Protein,Protein, Viral,Proteins, Viral
D014771 Virion The infective system of a virus, composed of the viral genome, a protein core, and a protein coat called a capsid, which may be naked or enclosed in a lipoprotein envelope called the peplos. Virus Particle,Viral Particle,Viral Particles,Particle, Viral,Particle, Virus,Particles, Viral,Particles, Virus,Virions,Virus Particles
D015678 Viral Structural Proteins Viral proteins that are components of the mature assembled VIRUS PARTICLES. They may include nucleocapsid core proteins (gag proteins), enzymes packaged within the virus particle (pol proteins), and membrane components (env proteins). These do not include the proteins encoded in the VIRAL GENOME that are produced in infected cells but which are not packaged in the mature virus particle,i.e. the so called non-structural proteins (VIRAL NONSTRUCTURAL PROTEINS). Polypeptide VP1, Structural,VP(1),VP(2),VP(3),VP(6),VP(7),Viral Structural Proteins VP,Virus Structural Proteins,Proteins, Viral Structural,Proteins, Virus Structural,Structural Polypeptide VP1,Structural Proteins, Viral,Structural Proteins, Virus,VP1, Structural Polypeptide

Related Publications

S A Sedman, and J E Mertz
December 1975, Virology,
S A Sedman, and J E Mertz
April 2000, Molecular and cellular biology,
S A Sedman, and J E Mertz
March 1978, Proceedings of the National Academy of Sciences of the United States of America,
S A Sedman, and J E Mertz
April 1987, Molecular and cellular biology,
S A Sedman, and J E Mertz
July 1979, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!