Effects of electrical stimulation of the parasympathetic nerve on the levels of cholinergic muscarinic and beta-adrenergic receptors and cyclic nucleotides in rat salivary glands. 1988

C A Schneyer, and M Humphreys-Beher, and H D Hall
Department of Physiology, University of Alabama, Birmingham 35294.

Density of muscarinic receptors of rat parotid gland, although unchanged after 5 or 10 min of stimulation of the parasympathetic nerve to the gland, showed a decrease of 23% following a 15-min period of stimulation. After 30 min the decrease was 19% but by 60 min density of receptors returned to within 5% of receptor density of the unstimulated gland; there was virtually no change in density of beta adrenoceptors at any time during the 60 min of stimulation. Markedly elevated (30-fold increase) levels of cyclic GMP appeared within 5 min after initiation of nerve stimulation and remained at this level at 10 min, but dropped from 90 to 46 pmol/mg total protein by 15 min, the time at which a decrease in muscarinic receptors first was evident. GMP levels continued to decrease but were still four times basal levels after 60 min of stimulation and did not return to normal concentration until 120 min. Cyclic AMP was generally unchanged. These changes in muscarinic receptors and cyclic GMP are apparently closely related to the kind of neural stimulation, unlike the condition when stimulation of the sympathetic nerve was employed.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D010275 Parasympathetic Nervous System The craniosacral division of the autonomic nervous system. The cell bodies of the parasympathetic preganglionic fibers are in brain stem nuclei and in the sacral spinal cord. They synapse in cranial autonomic ganglia or in terminal ganglia near target organs. The parasympathetic nervous system generally acts to conserve resources and restore homeostasis, often with effects reciprocal to the sympathetic nervous system. Nervous System, Parasympathetic,Nervous Systems, Parasympathetic,Parasympathetic Nervous Systems,System, Parasympathetic Nervous,Systems, Parasympathetic Nervous
D010306 Parotid Gland The largest of the three pairs of SALIVARY GLANDS. They lie on the sides of the FACE immediately below and in front of the EAR. Gland, Parotid,Glands, Parotid,Parotid Glands
D011813 Quinuclidinyl Benzilate A high-affinity muscarinic antagonist commonly used as a tool in animal and tissue studies. Benzilate, Quinuclidinyl
D011943 Receptors, Adrenergic, beta One of two major pharmacologically defined classes of adrenergic receptors. The beta adrenergic receptors play an important role in regulating CARDIAC MUSCLE contraction, SMOOTH MUSCLE relaxation, and GLYCOGENOLYSIS. Adrenergic beta-Receptor,Adrenergic beta-Receptors,Receptors, beta-Adrenergic,beta Adrenergic Receptor,beta-Adrenergic Receptor,beta-Adrenergic Receptors,Receptor, Adrenergic, beta,Adrenergic Receptor, beta,Adrenergic beta Receptor,Adrenergic beta Receptors,Receptor, beta Adrenergic,Receptor, beta-Adrenergic,Receptors, beta Adrenergic,beta Adrenergic Receptors,beta-Receptor, Adrenergic,beta-Receptors, Adrenergic
D011976 Receptors, Muscarinic One of the two major classes of cholinergic receptors. Muscarinic receptors were originally defined by their preference for MUSCARINE over NICOTINE. There are several subtypes (usually M1, M2, M3....) that are characterized by their cellular actions, pharmacology, and molecular biology. Muscarinic Acetylcholine Receptors,Muscarinic Receptors,Muscarinic Acetylcholine Receptor,Muscarinic Receptor,Acetylcholine Receptor, Muscarinic,Acetylcholine Receptors, Muscarinic,Receptor, Muscarinic,Receptor, Muscarinic Acetylcholine,Receptors, Muscarinic Acetylcholine
D004082 Dihydroalprenolol Hydrogenated alprenolol derivative where the extra hydrogens are often tritiated. This radiolabeled form of ALPRENOLOL, a beta-adrenergic blocker, is used to label the beta-adrenergic receptor for isolation and study. 1-((Methylethyl)amino)-3-(2-propylphenoxy)-2-propanol
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D006152 Cyclic GMP Guanosine cyclic 3',5'-(hydrogen phosphate). A guanine nucleotide containing one phosphate group which is esterified to the sugar moiety in both the 3'- and 5'-positions. It is a cellular regulatory agent and has been described as a second messenger. Its levels increase in response to a variety of hormones, including acetylcholine, insulin, and oxytocin and it has been found to activate specific protein kinases. (From Merck Index, 11th ed) Guanosine Cyclic 3',5'-Monophosphate,Guanosine Cyclic 3,5 Monophosphate,Guanosine Cyclic Monophosphate,Guanosine Cyclic-3',5'-Monophosphate,3',5'-Monophosphate, Guanosine Cyclic,Cyclic 3',5'-Monophosphate, Guanosine,Cyclic Monophosphate, Guanosine,Cyclic-3',5'-Monophosphate, Guanosine,GMP, Cyclic,Guanosine Cyclic 3',5' Monophosphate,Monophosphate, Guanosine Cyclic

Related Publications

C A Schneyer, and M Humphreys-Beher, and H D Hall
February 1979, Biochimica et biophysica acta,
C A Schneyer, and M Humphreys-Beher, and H D Hall
December 1979, Journal of neurochemistry,
C A Schneyer, and M Humphreys-Beher, and H D Hall
November 1979, The Journal of clinical investigation,
C A Schneyer, and M Humphreys-Beher, and H D Hall
May 1989, Circulation research,
C A Schneyer, and M Humphreys-Beher, and H D Hall
October 1978, Endocrinologia japonica,
C A Schneyer, and M Humphreys-Beher, and H D Hall
January 1986, Archives of oral biology,
C A Schneyer, and M Humphreys-Beher, and H D Hall
April 2010, The international journal of neuropsychopharmacology,
Copied contents to your clipboard!