Deletion analysis of sucrose metabolic genes from a Salmonella plasmid cloned in Escherichia coli K12. 1987

C Hardesty, and G Colón, and C Ferran, and J M DiRienzo
Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia 19104.

The sucrose operon from pUR400, a 78-kbp conjugative Salmonella plasmid, was cloned in Escherichia coli K12. The operon was located in a 5.7-kbp SalI restriction fragment and was subcloned, in each of two possible orientations, using the expression vector pUC18. The insert DNA was restriction mapped and duplicate restriction sites in the insert and in the polylinker of the vector were used to create various deletions promoter distal in the operon sequence. Additional deletions were made with the restriction exonuclease Bal31. Cells containing hybrid plasmids with specified deletions lacked the ability to transport sucrose or were constitutive for hydrolase and/or uptake activities. The scrA (enzyme IIScr) and scrR (regulatory) genes resided within 2900-bp SmaI-SalI DNA fragment and were assigned the order scrB, scrA, scrR. An amplified sucrose-inducible gene product, Mr 68,000, was detected only in the membrane fraction from recombinant cells that contained plasmid with the intact operon sequence. This protein represented 11% of the total membrane protein and was resistant to extraction with 0.5 M sodium chloride, 2% Triton X-100, and 0.5% sodium deoxycholate. The protein did not appear to be the product of either the scrA, scrB, or scrR gene and may therefore represent a previously unidentified membrane-bound sucrose protein. A new gene, scrC, is proposed. In addition, the cloned 5.7-kbp SalI and 2.5-kbp SmaI-SalI DNA fragments failed to hybridize to chromosomal DNA from Bacillus subtilis, Streptococcus lactis, Streptococcus mutans, and Lactobacillus acidophilus as well as to DNA from a sucrose plasmid from Salmonella tennessee. However, the probes showed weak homology with a 20-kbp EcoRI restriction fragment from Klebsiella pneumoniae.

UI MeSH Term Description Entries
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D009876 Operon In bacteria, a group of metabolically related genes, with a common promoter, whose transcription into a single polycistronic MESSENGER RNA is under the control of an OPERATOR REGION. Operons
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D002872 Chromosome Deletion Actual loss of portion of a chromosome. Monosomy, Partial,Partial Monosomy,Deletion, Chromosome,Deletions, Chromosome,Monosomies, Partial,Partial Monosomies
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D005822 Genetic Vectors DNA molecules capable of autonomous replication within a host cell and into which other DNA sequences can be inserted and thus amplified. Many are derived from PLASMIDS; BACTERIOPHAGES; or VIRUSES. They are used for transporting foreign genes into recipient cells. Genetic vectors possess a functional replicator site and contain GENETIC MARKERS to facilitate their selective recognition. Cloning Vectors,Shuttle Vectors,Vectors, Genetic,Cloning Vector,Genetic Vector,Shuttle Vector,Vector, Cloning,Vector, Genetic,Vector, Shuttle,Vectors, Cloning,Vectors, Shuttle

Related Publications

C Hardesty, and G Colón, and C Ferran, and J M DiRienzo
January 1988, Molecular microbiology,
C Hardesty, and G Colón, and C Ferran, and J M DiRienzo
September 1990, Molekuliarnaia genetika, mikrobiologiia i virusologiia,
C Hardesty, and G Colón, and C Ferran, and J M DiRienzo
January 1975, Annales de microbiologie,
C Hardesty, and G Colón, and C Ferran, and J M DiRienzo
January 1985, Annales de l'Institut Pasteur. Microbiologie,
C Hardesty, and G Colón, and C Ferran, and J M DiRienzo
September 1974, Journal of general microbiology,
C Hardesty, and G Colón, and C Ferran, and J M DiRienzo
January 2008, Molecular genetics and genomics : MGG,
C Hardesty, and G Colón, and C Ferran, and J M DiRienzo
January 1985, Molecular & general genetics : MGG,
C Hardesty, and G Colón, and C Ferran, and J M DiRienzo
August 1984, The Journal of biological chemistry,
C Hardesty, and G Colón, and C Ferran, and J M DiRienzo
April 1978, Genetical research,
C Hardesty, and G Colón, and C Ferran, and J M DiRienzo
June 1988, Journal of general microbiology,
Copied contents to your clipboard!