'Illegitimate' recombination events in polyoma-transformed rat cells. 1987

R Yarom, and A Lapidot, and A Neer, and N Baran, and H Manor
Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel.

In the LPT line of polyoma (Py)-transformed rat cells, amplification of the integrated viral DNA and of cell nucleotide sequences flanking the viral integration site, can be induced either spontaneously or by treatment with carcinogens. We show here that the amplified DNA includes interspersed viral and cellular sequences generated by 'illegitimate' recombination events. Genomic libraries have been prepared in phage lambda vectors from LPT cells treated with the inducing agent mitomycin C and from untreated LPT cells. Four phages, including viral-cell DNA recombinants, have been isolated from these libraries. Sequencing through the recombination sites revealed the following characteristics: (i) The crossover points map at four different positions in the viral DNA and at four different positions in the flanking cell DNA. (ii) There are very short homologous sequences of 1, 2, or 4 bp, at the recombination sites. (iii) Aside from the exchanges between the viral and the cellular DNA, no further rearrangements occurred around the new viral-cellular DNA junctions. (iv) Next to the recombination sites, there are blocks of homopurine-homopyrimidine sequences, which may assume a structure that differs from the Watson-Crick double helix. (v) Clustered homologous sequence blocks of up to 10 bp are present less than 200 bp away from the recombination sites. These homologies are not in register. Based on these results, we propose a model that may account for these recombination events and, more generally, for recombination events that occur during gene amplification in mammalian cells.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D011120 Polyomavirus A genus of potentially oncogenic viruses of the family POLYOMAVIRIDAE. These viruses are normally present in their natural hosts as latent infections. The virus is oncogenic in hosts different from the species of origin. Bovine polyomavirus,Murine polyomavirus,Hamster polyomavirus,Polyoma Virus,Polyoma Viruses,Bovine polyomaviruses,Hamster polyomaviruses,Murine polyomaviruses,Polyomaviruses,Virus, Polyoma,Viruses, Polyoma,polyomavirus, Hamster,polyomaviruses, Bovine,polyomaviruses, Murine
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D005784 Gene Amplification A selective increase in the number of copies of a gene coding for a specific protein without a proportional increase in other genes. It occurs naturally via the excision of a copy of the repeating sequence from the chromosome and its extrachromosomal replication in a plasmid, or via the production of an RNA transcript of the entire repeating sequence of ribosomal RNA followed by the reverse transcription of the molecule to produce an additional copy of the original DNA sequence. Laboratory techniques have been introduced for inducing disproportional replication by unequal crossing over, uptake of DNA from lysed cells, or generation of extrachromosomal sequences from rolling circle replication. Amplification, Gene
D005814 Genes, Viral The functional hereditary units of VIRUSES. Viral Genes,Gene, Viral,Viral Gene
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

R Yarom, and A Lapidot, and A Neer, and N Baran, and H Manor
August 1984, Virology,
R Yarom, and A Lapidot, and A Neer, and N Baran, and H Manor
January 1983, Nature,
R Yarom, and A Lapidot, and A Neer, and N Baran, and H Manor
March 1978, Journal of virology,
R Yarom, and A Lapidot, and A Neer, and N Baran, and H Manor
January 2006, Nucleic acids research,
R Yarom, and A Lapidot, and A Neer, and N Baran, and H Manor
August 1966, Journal of the National Cancer Institute,
R Yarom, and A Lapidot, and A Neer, and N Baran, and H Manor
November 1988, Molekuliarnaia genetika, mikrobiologiia i virusologiia,
R Yarom, and A Lapidot, and A Neer, and N Baran, and H Manor
March 1971, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
R Yarom, and A Lapidot, and A Neer, and N Baran, and H Manor
December 1985, Journal of virology,
R Yarom, and A Lapidot, and A Neer, and N Baran, and H Manor
January 1982, Journal of virology,
R Yarom, and A Lapidot, and A Neer, and N Baran, and H Manor
December 1962, Virology,
Copied contents to your clipboard!