Alternative splicing of chicken fibronectin in embryos and in normal and transformed cells. 1987

P A Norton, and R O Hynes
Center for Cancer Research, Massachusetts Institute of Technology, Cambridge 02139.

To study the alternative splicing of fibronectin during embryogenesis and oncogenic transformation, we isolated cDNA clones of chicken fibronectin. The partial amino acid sequence deduced from sequencing of these clones showed that, overall, chicken fibronectin is approximately 80% identical with mammalian fibronectins. However, two of the three known regions of alternative splicing differed from this average. The V region was significantly more divergent, and RNA from embryonic chicken liver showed a pattern of V exon splicing which was distinct from that seen in human or rat fibronectins. In contrast, the EIIIB segment was very highly conserved (96%). As in mammals, this segment and another (EIIIA) were alternatively spliced in a cell-type-specific fashion. EIIIA+ and EIIIB+ species were almost absent in liver but predominated in total embryo RNA at all times from 2.5 to 11 days postfertilization. We also examined the possible contributions of fibronectin splicing and integrin receptor expression to the loss of fibronectin on oncogenic transformation. We detected little change in fibronectin splicing, other than a slight increase in representation of EIIIB+ species in fibroblasts after transformation by Rous sarcoma virus. It was also established that the overall reduction in fibronectin mRNA level observed after transformation was not accompanied by a decrease in integrin mRNA levels, indicating that fibronectin and integrin receptors are not coordinately regulated at the transcriptional level.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008562 Membrane Glycoproteins Glycoproteins found on the membrane or surface of cells. Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D002471 Cell Transformation, Neoplastic Cell changes manifested by escape from control mechanisms, increased growth potential, alterations in the cell surface, karyotypic abnormalities, morphological and biochemical deviations from the norm, and other attributes conferring the ability to invade, metastasize, and kill. Neoplastic Transformation, Cell,Neoplastic Cell Transformation,Transformation, Neoplastic Cell,Tumorigenic Transformation,Cell Neoplastic Transformation,Cell Neoplastic Transformations,Cell Transformations, Neoplastic,Neoplastic Cell Transformations,Neoplastic Transformations, Cell,Transformation, Cell Neoplastic,Transformation, Tumorigenic,Transformations, Cell Neoplastic,Transformations, Neoplastic Cell,Transformations, Tumorigenic,Tumorigenic Transformations
D002472 Cell Transformation, Viral An inheritable change in cells manifested by changes in cell division and growth and alterations in cell surface properties. It is induced by infection with a transforming virus. Transformation, Viral Cell,Viral Cell Transformation,Cell Transformations, Viral,Transformations, Viral Cell,Viral Cell Transformations
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004274 DNA, Recombinant Biologically active DNA which has been formed by the in vitro joining of segments of DNA from different sources. It includes the recombination joint or edge of a heteroduplex region where two recombining DNA molecules are connected. Genes, Spliced,Recombinant DNA,Spliced Gene,Recombinant DNA Research,Recombination Joint,DNA Research, Recombinant,Gene, Spliced,Joint, Recombination,Research, Recombinant DNA,Spliced Genes
D005353 Fibronectins Glycoproteins found on the surfaces of cells, particularly in fibrillar structures. The proteins are lost or reduced when these cells undergo viral or chemical transformation. They are highly susceptible to proteolysis and are substrates for activated blood coagulation factor VIII. The forms present in plasma are called cold-insoluble globulins. Cold-Insoluble Globulins,LETS Proteins,Fibronectin,Opsonic Glycoprotein,Opsonic alpha(2)SB Glycoprotein,alpha 2-Surface Binding Glycoprotein,Cold Insoluble Globulins,Globulins, Cold-Insoluble,Glycoprotein, Opsonic,Proteins, LETS,alpha 2 Surface Binding Glycoprotein
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

P A Norton, and R O Hynes
November 1988, Development (Cambridge, England),
P A Norton, and R O Hynes
June 1989, Development (Cambridge, England),
P A Norton, and R O Hynes
December 1986, Biochimica et biophysica acta,
P A Norton, and R O Hynes
June 1978, Annals of the New York Academy of Sciences,
P A Norton, and R O Hynes
June 1978, Annals of the New York Academy of Sciences,
P A Norton, and R O Hynes
November 1986, The Journal of cell biology,
P A Norton, and R O Hynes
January 2001, Anticancer research,
Copied contents to your clipboard!