| D008565 |
Membrane Proteins |
Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. |
Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell |
|
| D008928 |
Mitochondria |
Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) |
Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions |
|
| D055503 |
Protein Multimerization |
The assembly of the QUATERNARY PROTEIN STRUCTURE of multimeric proteins (MULTIPROTEIN COMPLEXES) from their composite PROTEIN SUBUNITS. |
Protein Dimerization,Protein Heteromultimerizaton,Protein Multimer Assembly,Protein Trimerization,Assembly, Protein Multimer,Dimerization, Protein,Heteromultimerizaton, Protein,Heteromultimerizatons, Protein,Multimer Assembly, Protein,Multimerization, Protein,Trimerization, Protein |
|
| D021381 |
Protein Transport |
The process of moving proteins from one cellular compartment (including extracellular) to another by various sorting and transport mechanisms such as gated transport, protein translocation, and vesicular transport. |
Cellular Protein Targeting,Gated Protein Transport,Protein Targeting, Cellular,Protein Translocation,Transmembrane Protein Transport,Vesicular Protein Transport,Protein Localization Processes, Cellular,Protein Sorting,Protein Trafficking,Protein Transport, Gated,Protein Transport, Transmembrane,Protein Transport, Vesicular,Traffickings, Protein |
|
| D024101 |
Mitochondrial Proteins |
Proteins encoded by the mitochondrial genome or proteins encoded by the nuclear genome that are imported to and resident in the MITOCHONDRIA. |
Proteins, Mitochondrial,Mitochondrial Protein,Protein, Mitochondrial |
|
| D025261 |
Mitochondrial Proton-Translocating ATPases |
Proton-translocating ATPases responsible for ADENOSINE TRIPHOSPHATE synthesis in the MITOCHONDRIA. They derive energy from the respiratory chain-driven reactions that develop high concentrations of protons within the intermembranous space of the mitochondria. |
Electron Transport Complex V,Mitochondrial ATP Synthase,Respiratory Complex V,Mitochondrial ATP Synthases,Mitochondrial F(1)F(0) ATPase,ATP Synthase, Mitochondrial,ATP Synthases, Mitochondrial,ATPases, Mitochondrial Proton-Translocating,Mitochondrial Proton Translocating ATPases,Proton-Translocating ATPases, Mitochondrial |
|
| D029701 |
Saccharomyces cerevisiae Proteins |
Proteins obtained from the species SACCHAROMYCES CEREVISIAE. The function of specific proteins from this organism are the subject of intense scientific interest and have been used to derive basic understanding of the functioning similar proteins in higher eukaryotes. |
Baker's Yeast Proteins,S cerevisiae Proteins |
|