Base pair mismatches and carcinogen-modified bases in DNA: an NMR study of A.C and A.O4meT pairing in dodecanucleotide duplexes. 1988

M W Kalnik, and M Kouchakdjian, and B F Li, and P F Swann, and D J Patel
Department of Biochemistry and Molecular Biophysics, College of Physicians and Surgeons, Columbia University, New York, New York 10032.

Structural features of A.C mismatches and A.O4meT pairs in the interior of oligodeoxynucleotide duplexes have been investigated by high-resolution two-dimensional proton NMR spectroscopy on the self-complementary d(C-G-C-A-A-G-C-T-C-G-C-G) duplex (designated A.C 12-mer) and and the self-complementary d(C-G-C-A-A-G-C-T-O4meT-G-C-G) duplex (designated A.O4meT 12-mer) containing A.C and A.O4meT pairs at identical positions four base pairs in from either end of and A.O4meT pairs at identical positions four base pairs in from either end of the duplex. Proton NMR shows that there are similar pH-dependent changes in the structure in the A.C 12-mer and A.O4meT 12-mer duplexes. Our studies have focused on the low-pH (pH 5.5) conformation where high-quality two-dimensional NOESY data sets were collected from the exchangeable and nonexchangeable protons in these duplexes. The spectral parameters for the A.C 12-mer and the A.O4meT 12-mer duplexes were very similar, indicating that they must have similar structures at this pH in aqueous solution. Both structures are right-handed double helices with all the bases adopting the normal anti configuration about the glycosidic bond. The same atoms are involved in hydrogen-bond pairing for the A.C mismatch and the A.O4meT pair, and these pairs have a similar spatial relationship to flanking base pairs.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D009838 Oligodeoxyribonucleotides A group of deoxyribonucleotides (up to 12) in which the phosphate residues of each deoxyribonucleotide act as bridges in forming diester linkages between the deoxyribose moieties. Oligodeoxynucleotide,Oligodeoxyribonucleotide,Oligodeoxynucleotides
D002273 Carcinogens Substances that increase the risk of NEOPLASMS in humans or animals. Both genotoxic chemicals, which affect DNA directly, and nongenotoxic chemicals, which induce neoplasms by other mechanism, are included. Carcinogen,Oncogen,Oncogens,Tumor Initiator,Tumor Initiators,Tumor Promoter,Tumor Promoters,Initiator, Tumor,Initiators, Tumor,Promoter, Tumor,Promoters, Tumor
D003596 Cytosine A pyrimidine base that is a fundamental unit of nucleic acids.
D003903 Deuterium The stable isotope of hydrogen. It has one neutron and one proton in the nucleus. Deuterons,Hydrogen-2,Hydrogen 2
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D000225 Adenine A purine base and a fundamental unit of ADENINE NUCLEOTIDES. Vitamin B 4,4, Vitamin B,B 4, Vitamin
D001482 Base Composition The relative amounts of the PURINES and PYRIMIDINES in a nucleic acid. Base Ratio,G+C Composition,Guanine + Cytosine Composition,G+C Content,GC Composition,GC Content,Guanine + Cytosine Content,Base Compositions,Base Ratios,Composition, Base,Composition, G+C,Composition, GC,Compositions, Base,Compositions, G+C,Compositions, GC,Content, G+C,Content, GC,Contents, G+C,Contents, GC,G+C Compositions,G+C Contents,GC Compositions,GC Contents,Ratio, Base,Ratios, Base

Related Publications

M W Kalnik, and M Kouchakdjian, and B F Li, and P F Swann, and D J Patel
July 1989, Biochemistry,
M W Kalnik, and M Kouchakdjian, and B F Li, and P F Swann, and D J Patel
July 1989, Biochemistry,
M W Kalnik, and M Kouchakdjian, and B F Li, and P F Swann, and D J Patel
January 1995, Methods in enzymology,
M W Kalnik, and M Kouchakdjian, and B F Li, and P F Swann, and D J Patel
April 1986, Biochemical Society transactions,
M W Kalnik, and M Kouchakdjian, and B F Li, and P F Swann, and D J Patel
December 1987, The Journal of biological chemistry,
M W Kalnik, and M Kouchakdjian, and B F Li, and P F Swann, and D J Patel
May 1991, Biochemistry,
M W Kalnik, and M Kouchakdjian, and B F Li, and P F Swann, and D J Patel
November 2002, Nucleic acids research,
M W Kalnik, and M Kouchakdjian, and B F Li, and P F Swann, and D J Patel
November 2019, Scientific reports,
M W Kalnik, and M Kouchakdjian, and B F Li, and P F Swann, and D J Patel
September 2013, Journal of magnetic resonance (San Diego, Calif. : 1997),
Copied contents to your clipboard!