Topoisomerase inhibitors induce irreversible fragmentation of replicated DNA in concanavalin A stimulated splenocytes. 1988

C Jaxel, and G Taudou, and C Portemer, and G Mirambeau, and J Panijel, and M Duguet
Laboratorie d'Enzymologie des Acides Nucléiques, UA 554 CNRS, Université Pierre et Marie Curie, Paris, France.

Etoposide, a nonintercalative antitumor drug, is known to inhibit topoisomerase II. Its effects have been tested in concanavalin A stimulated splenocytes, a system of cell proliferation in which topoisomerase II is induced. The primary effect of etoposide was a strong inhibition of DNA synthesis and the production of reversible DNA breaks, presumably associated with topoisomerase II. However, prolonged (20 h) contact with the drug resulted in a secondary fragmentation by irreversible double-strand breaks that yielded unusually small DNA fragments. Surprisingly, the same effect was obtained with novobiocin, which does not produce topoisomerase II associated DNA breaks. Moreover, long-term treatment with camptothecin, a specific inhibitor of topoisomerase I which is known to induce single-strand breaks in vitro and in vivo, also produced double-strand breaks and DNA fragmentation into small pieces. These findings suggest that prolonged treatment of proliferating splenocytes by etoposide and other topoisomerase inhibitors induced DNA fragmentation by a mechanism that does not directly involve topoisomerases.

UI MeSH Term Description Entries
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D008214 Lymphocytes White blood cells formed in the body's lymphoid tissue. The nucleus is round or ovoid with coarse, irregularly clumped chromatin while the cytoplasm is typically pale blue with azurophilic (if any) granules. Most lymphocytes can be classified as either T or B (with subpopulations of each), or NATURAL KILLER CELLS. Lymphoid Cells,Cell, Lymphoid,Cells, Lymphoid,Lymphocyte,Lymphoid Cell
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D009675 Novobiocin An antibiotic compound derived from Streptomyces niveus. It has a chemical structure similar to coumarin. Novobiocin binds to DNA gyrase, and blocks adenosine triphosphatase (ATPase) activity. (From Reynolds, Martindale The Extra Pharmacopoeia, 30th ed, p189) Crystallinic Acid,Streptonivicin,Novobiocin Calcium,Novobiocin Sodium,Novobiocin, Monosodium Salt,Calcium, Novobiocin,Monosodium Salt Novobiocin,Sodium, Novobiocin
D010664 Phenylmethylsulfonyl Fluoride An enzyme inhibitor that inactivates IRC-50 arvin, subtilisin, and the fatty acid synthetase complex. Benzenemethanesulfonyl Fluoride,Phenylmethanesulfonyl Fluoride,Fluoride, Benzenemethanesulfonyl,Fluoride, Phenylmethanesulfonyl,Fluoride, Phenylmethylsulfonyl
D002166 Camptothecin An alkaloid isolated from the stem wood of the Chinese tree, Camptotheca acuminata. This compound selectively inhibits the nuclear enzyme DNA TOPOISOMERASES, TYPE I. Several semisynthetic analogs of camptothecin have demonstrated antitumor activity. Camptothecine
D003208 Concanavalin A A MANNOSE/GLUCOSE binding lectin isolated from the jack bean (Canavalia ensiformis). It is a potent mitogen used to stimulate cell proliferation in lymphocytes, primarily T-lymphocyte, cultures.
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004250 DNA Topoisomerases, Type II DNA TOPOISOMERASES that catalyze ATP-dependent breakage of both strands of DNA, passage of the unbroken strands through the breaks, and rejoining of the broken strands. These enzymes bring about relaxation of the supercoiled DNA and resolution of a knotted circular DNA duplex. DNA Topoisomerase (ATP-Hydrolysing),DNA Topoisomerase II,DNA Topoisomerase II alpha,DNA Topoisomerase II beta,DNA Type 2 Topoisomerase,TOP2A Protein,TOP2B Protein,Topoisomerase II,Topoisomerase II alpha,Topoisomerase II beta,Type II DNA Topoisomerase,alpha, Topoisomerase II,beta, Topoisomerase II
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA

Related Publications

C Jaxel, and G Taudou, and C Portemer, and G Mirambeau, and J Panijel, and M Duguet
October 1984, FEBS letters,
C Jaxel, and G Taudou, and C Portemer, and G Mirambeau, and J Panijel, and M Duguet
November 1980, Molecular and cellular biochemistry,
C Jaxel, and G Taudou, and C Portemer, and G Mirambeau, and J Panijel, and M Duguet
January 2016, Food science and biotechnology,
C Jaxel, and G Taudou, and C Portemer, and G Mirambeau, and J Panijel, and M Duguet
December 1998, Biochemical and biophysical research communications,
C Jaxel, and G Taudou, and C Portemer, and G Mirambeau, and J Panijel, and M Duguet
January 1995, Gerontology,
C Jaxel, and G Taudou, and C Portemer, and G Mirambeau, and J Panijel, and M Duguet
January 1995, Life sciences,
C Jaxel, and G Taudou, and C Portemer, and G Mirambeau, and J Panijel, and M Duguet
July 1991, Journal of leukocyte biology,
C Jaxel, and G Taudou, and C Portemer, and G Mirambeau, and J Panijel, and M Duguet
January 1993, Biochimica et biophysica acta,
C Jaxel, and G Taudou, and C Portemer, and G Mirambeau, and J Panijel, and M Duguet
June 1987, Biochemical and biophysical research communications,
C Jaxel, and G Taudou, and C Portemer, and G Mirambeau, and J Panijel, and M Duguet
January 1994, Cancer chemotherapy and biological response modifiers,
Copied contents to your clipboard!