Local and metastatic tumor growth and membrane properties of LM fibroblasts in athymic (nude) mice. 1988

A B Kier, and M T Parker, and F Schroeder
Department of Pathology, College of Medicine, University of Cincinnati, OH 45267-0529.

LM fibroblasts grown in a chemically-defined, serum-free medium readily incorporated choline or one of three analogues of choline, namely N,N-dimethylethanolamine, N-monomethylethanolamine, or ethanolamine into membrane phospholipids. The effect of these phospholipid manipulations in vitro on tumor growth and metastasis was examined in nude mice. Serum and choline-fed cells most frequently metastasized (74% and 68%, respectively), while frequency of lung metastasis was 46%, 42% and 17% in mice injected with cells fed with dimethylethanolamine, monomethylethanolamine, and ethanolamine, respectively. Metastases from cells cultured with serum, choline or dimethylethanolamine, but not from monomethylethanolamine or ethanolamine, were extensive and highly invasive. The specific activity of the (Na+ + K+)-ATPase but not of 5'-nucleotidase was significantly decreased in local tumor plasma membranes from choline analogue-fed cells as compared to tumor plasma membranes from choline-fed cells. When compared to the choline-fed tumor cells, the specific activities of three mitochondrial enzymes, namely NADH dependent, rotenone insensitive NADH-dependent, and rotenone sensitive NADH-dependent cytochrome-c reductase, were significantly increased in the choline analogue-supplemented cells. The arachidonic acid content of phosphatidylcholine in plasma membranes, microsomes, and mitochondria was significantly decreased in tumor membranes from choline analogue-fed cells as compared to tumor membranes from choline-fed cells. As compared to local tumor plasma membranes, the lung metastasis plasma membranes had elevated (Na+ + K+)-ATPase specific activity, phospholipid oleic and arachidonic acid content, and fluidity. In contrast, the 5'-nucleotidase specific activity, the content of cholesterol, phospholipid, and phosphatidylethanolamine were decreased in lung metastasis plasma membranes. In summary, membrane alterations of LM tumor cells in vitro (1) were not completely reversed in vivo, and (2) affected metastatic ability.

UI MeSH Term Description Entries
D008175 Lung Neoplasms Tumors or cancer of the LUNG. Cancer of Lung,Lung Cancer,Pulmonary Cancer,Pulmonary Neoplasms,Cancer of the Lung,Neoplasms, Lung,Neoplasms, Pulmonary,Cancer, Lung,Cancer, Pulmonary,Cancers, Lung,Cancers, Pulmonary,Lung Cancers,Lung Neoplasm,Neoplasm, Lung,Neoplasm, Pulmonary,Pulmonary Cancers,Pulmonary Neoplasm
D008563 Membrane Lipids Lipids, predominantly phospholipids, cholesterol and small amounts of glycolipids found in membranes including cellular and intracellular membranes. These lipids may be arranged in bilayers in the membranes with integral proteins between the layers and peripheral proteins attached to the outside. Membrane lipids are required for active transport, several enzymatic activities and membrane formation. Cell Membrane Lipid,Cell Membrane Lipids,Membrane Lipid,Lipid, Cell Membrane,Lipid, Membrane,Lipids, Cell Membrane,Lipids, Membrane,Membrane Lipid, Cell,Membrane Lipids, Cell
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D008819 Mice, Nude Mutant mice homozygous for the recessive gene "nude" which fail to develop a thymus. They are useful in tumor studies and studies on immune responses. Athymic Mice,Mice, Athymic,Nude Mice,Mouse, Athymic,Mouse, Nude,Athymic Mouse,Nude Mouse
D008861 Microsomes Artifactual vesicles formed from the endoplasmic reticulum when cells are disrupted. They are isolated by differential centrifugation and are composed of three structural features: rough vesicles, smooth vesicles, and ribosomes. Numerous enzyme activities are associated with the microsomal fraction. (Glick, Glossary of Biochemistry and Molecular Biology, 1990; from Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Microsome
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D009362 Neoplasm Metastasis The transfer of a neoplasm from one organ or part of the body to another remote from the primary site. Metastase,Metastasis,Metastases, Neoplasm,Metastasis, Neoplasm,Neoplasm Metastases,Metastases
D009368 Neoplasm Transplantation Experimental transplantation of neoplasms in laboratory animals for research purposes. Transplantation, Neoplasm,Neoplasm Transplantations,Transplantations, Neoplasm
D009374 Neoplasms, Experimental Experimentally induced new abnormal growth of TISSUES in animals to provide models for studying human neoplasms. Experimental Neoplasms,Experimental Neoplasm,Neoplasm, Experimental
D009708 Nucleotidases A class of enzymes that catalyze the conversion of a nucleotide and water to a nucleoside and orthophosphate. EC 3.1.3.-.

Related Publications

A B Kier, and M T Parker, and F Schroeder
April 1990, Cancer letters,
A B Kier, and M T Parker, and F Schroeder
March 1982, Transplantation,
A B Kier, and M T Parker, and F Schroeder
March 1990, Biochimica et biophysica acta,
A B Kier, and M T Parker, and F Schroeder
May 1980, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
A B Kier, and M T Parker, and F Schroeder
October 1999, Cancer,
A B Kier, and M T Parker, and F Schroeder
June 1979, The Japanese journal of experimental medicine,
A B Kier, and M T Parker, and F Schroeder
January 1977, Journal of the National Cancer Institute,
A B Kier, and M T Parker, and F Schroeder
May 1991, The Journal of urology,
Copied contents to your clipboard!