Both standing and postural threat decrease Achilles' tendon reflex inhibition from tendon electrical stimulation. 2017

Brian C Horslen, and J Timothy Inglis, and Jean-Sébastien Blouin, and Mark G Carpenter
School of Kinesiology, University of British Columbia, Vancouver, Canada.

Golgi tendon organs (GTOs) and associated Ib reflexes contribute to standing balance, but the potential impacts of threats to standing balance on Ib reflexes are unknown. Tendon electrical stimulation to the Achilles' tendon was used to probe changes in Ib inhibition in medial gastrocnemius with postural orientation (lying prone vs. upright standing; experiment 1) and height-induced postural threat (standing at low and high surface heights; experiment 2). Ib inhibition was reduced while participants stood upright, compared to lying prone (42.2%); and further reduced when standing in the high, compared to low, threat condition (32.4%). These experiments will impact future research because they demonstrate that tendon electrical stimulation can be used to probe Ib reflexes in muscles engaged in standing balance. These results provide novel evidence that human short-latency GTO-Ib reflexes are dependent upon both task, as evidenced by changes with postural orientation, and context, such as height-induced postural threat during standing. Golgi tendon organ Ib reflexes are thought to contribute to standing balance control, but it is unknown if they are modulated when people are exposed to a postural threat. We used a novel application of tendon electrical stimulation (TStim) to elicit Ib inhibitory reflexes in the medial gastrocnemius, while actively engaged in upright standing balance, to examine (a) how Ib reflexes to TStim are influenced by upright stance, and (b) the effects of height-induced postural threat on Ib reflexes during standing. TStim evoked short-latency (<47 ms) inhibition apparent in trigger-averaged rectified EMG, which was quantified in terms of area, duration and mean amplitude of inhibition. In order to validate the use of TStim in a standing model, TStim-Ib inhibition was compared from conditions where participants were lying prone vs. standing upright. TStim evoked Ib inhibition in both conditions; however, significant reductions in Ib inhibition area (42.2%) and duration (32.9%) were observed during stance. Postural threat, manipulated by having participants stand at LOW (0.8 m high, 0.6 m from edge) and HIGH (3.2 m, at edge) elevated surfaces, significantly reduced Ib inhibition area (32.4%), duration (16.4%) and amplitude (24.8%) in the HIGH, compared to LOW, threat condition. These results demonstrate TStim is a viable technique for investigating Ib reflexes in standing, and confirm Ib reflexes are modulated with postural orientation. The novel observation of reduced Ib inhibition with elevated postural threat reveals that human Ib reflexes are context dependent, and the human Ib reflex pathways are modulated by threat or emotional processing centres of the CNS.

UI MeSH Term Description Entries
D008297 Male Males
D008465 Mechanoreceptors Cells specialized to transduce mechanical stimuli and relay that information centrally in the nervous system. Mechanoreceptor cells include the INNER EAR hair cells, which mediate hearing and balance, and the various somatosensory receptors, often with non-neural accessory structures. Golgi Tendon Organ,Golgi Tendon Organs,Krause's End Bulb,Krause's End Bulbs,Mechanoreceptor,Mechanoreceptor Cell,Meissner's Corpuscle,Neurotendinous Spindle,Neurotendinous Spindles,Receptors, Stretch,Ruffini's Corpuscle,Ruffini's Corpuscles,Stretch Receptor,Stretch Receptors,Mechanoreceptor Cells,Bulb, Krause's End,Bulbs, Krause's End,Cell, Mechanoreceptor,Cells, Mechanoreceptor,Corpuscle, Meissner's,Corpuscle, Ruffini's,Corpuscles, Ruffini's,End Bulb, Krause's,End Bulbs, Krause's,Krause End Bulb,Krause End Bulbs,Krauses End Bulb,Krauses End Bulbs,Meissner Corpuscle,Meissners Corpuscle,Organ, Golgi Tendon,Organs, Golgi Tendon,Receptor, Stretch,Ruffini Corpuscle,Ruffini Corpuscles,Ruffinis Corpuscle,Ruffinis Corpuscles,Spindle, Neurotendinous,Spindles, Neurotendinous,Tendon Organ, Golgi,Tendon Organs, Golgi
D009433 Neural Inhibition The function of opposing or restraining the excitation of neurons or their target excitable cells. Inhibition, Neural
D011187 Posture The position or physical attitude of the body. Postures
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004856 Postural Balance A POSTURE in which an ideal body mass distribution is achieved. Postural balance provides the body carriage stability and conditions for normal functions in stationary position or in movement, such as sitting, standing, or walking. Postural Control,Posture Balance,Posture Control,Posture Equilibrium,Balance, Postural,Musculoskeletal Equilibrium,Postural Equilibrium,Balance, Posture,Control, Postural,Control, Posture,Equilibrium, Musculoskeletal,Equilibrium, Postural,Equilibrium, Posture,Postural Controls,Posture Balances,Posture Controls,Posture Equilibriums
D005260 Female Females
D006181 H-Reflex A monosynaptic reflex elicited by stimulating a nerve, particularly the tibial nerve, with an electric shock. H Reflex,H-Reflexes,H Reflexes,Reflex, H
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000125 Achilles Tendon Tendon that connects the muscles in the back of the calf to the HEEL BONE. Calcaneal Tendon,Tendo Calcaneus,Calcaneal Tendons,Tendon, Achilles,Tendon, Calcaneal,Tendons, Calcaneal

Related Publications

Brian C Horslen, and J Timothy Inglis, and Jean-Sébastien Blouin, and Mark G Carpenter
February 1982, Experimental neurology,
Brian C Horslen, and J Timothy Inglis, and Jean-Sébastien Blouin, and Mark G Carpenter
September 2007, Journal of neurophysiology,
Brian C Horslen, and J Timothy Inglis, and Jean-Sébastien Blouin, and Mark G Carpenter
June 2011, Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology,
Brian C Horslen, and J Timothy Inglis, and Jean-Sébastien Blouin, and Mark G Carpenter
November 2007, Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology,
Brian C Horslen, and J Timothy Inglis, and Jean-Sébastien Blouin, and Mark G Carpenter
January 1968, The Journal of the Association of Physicians of India,
Brian C Horslen, and J Timothy Inglis, and Jean-Sébastien Blouin, and Mark G Carpenter
August 2012, Neuroscience letters,
Brian C Horslen, and J Timothy Inglis, and Jean-Sébastien Blouin, and Mark G Carpenter
April 2018, Journal of applied biomechanics,
Brian C Horslen, and J Timothy Inglis, and Jean-Sébastien Blouin, and Mark G Carpenter
April 2024, Journal of applied physiology (Bethesda, Md. : 1985),
Brian C Horslen, and J Timothy Inglis, and Jean-Sébastien Blouin, and Mark G Carpenter
April 1973, Ceskoslovenska gastroenterologie a vyziva,
Brian C Horslen, and J Timothy Inglis, and Jean-Sébastien Blouin, and Mark G Carpenter
June 1967, Zeitschrift fur die gesamte innere Medizin und ihre Grenzgebiete,
Copied contents to your clipboard!