MicroRNA expression profiles during cotton (Gossypium hirsutum L) fiber early development. 2017

Min Wang, and Runrun Sun, and Chao Li, and Qinglian Wang, and Baohong Zhang
Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, 453003, P. R. China.

The role of microRNAs (miRNAs) during cotton fiber development remains unclear. Here, a total of 54 miRNAs belonging to 39 families were selected to characterize miRNA regulatory mechanism in eight different fiber development stages in upland cotton cv BM-1. Among 54 miRNAs, 18 miRNAs were involved in cotton fiber initiation and eight miRNAs were related to fiber elongation and secondary wall biosynthesis. Additionally, 3,576 protein-coding genes were candidate target genes of these miRNAs, which are potentially involved in cotton fiber development. We also investigated the regulatory network of miRNAs and corresponding targets in fiber initiation and elongation, and secondary wall formation. Our Gene Ontology-based term classification and KEGG-based pathway enrichment analyses showed that the miRNA targets covered 220 biological processes, 67 molecular functions, 45 cellular components, and 10 KEGG pathways. Three of ten KEGG pathways were involved in lignan synthesis, cell elongation, and fatty acid biosynthesis, all of which have important roles in fiber development. Overall, our study shows the potential regulatory roles of miRNAs in cotton fiber development and the importance of miRNAs in regulating different cell types. This is helpful to design miRNA-based biotechnology for improving fiber quality and yield.

UI MeSH Term Description Entries
D003368 Gossypium A plant genus of the family MALVACEAE. It is the source of COTTON FIBER; COTTONSEED OIL, which is used for cooking, and GOSSYPOL. The economically important cotton crop is a major user of agricultural PESTICIDES. Cotton Plant,Cotton Plants,Gossypiums,Plant, Cotton,Plants, Cotton
D015723 Gene Library A large collection of DNA fragments cloned (CLONING, MOLECULAR) from a given organism, tissue, organ, or cell type. It may contain complete genomic sequences (GENOMIC LIBRARY) or complementary DNA sequences, the latter being formed from messenger RNA and lacking intron sequences. DNA Library,cDNA Library,DNA Libraries,Gene Libraries,Libraries, DNA,Libraries, Gene,Libraries, cDNA,Library, DNA,Library, Gene,Library, cDNA,cDNA Libraries
D053263 Gene Regulatory Networks Interacting DNA-encoded regulatory subsystems in the GENOME that coordinate input from activator and repressor TRANSCRIPTION FACTORS during development, cell differentiation, or in response to environmental cues. The networks function to ultimately specify expression of particular sets of GENES for specific conditions, times, or locations. Gene Circuits,Gene Modules,Gene Networks,Transcriptional Networks,Gene Module,Circuit, Gene,Circuits, Gene,Gene Circuit,Gene Network,Gene Regulatory Network,Module, Gene,Modules, Gene,Network, Gene,Network, Gene Regulatory,Network, Transcriptional,Networks, Gene,Networks, Gene Regulatory,Networks, Transcriptional,Regulatory Network, Gene,Regulatory Networks, Gene,Transcriptional Network
D058977 Molecular Sequence Annotation The addition of descriptive information about the function or structure of a molecular sequence to its MOLECULAR SEQUENCE DATA record. Gene Annotation,Protein Annotation,Annotation, Gene,Annotation, Molecular Sequence,Annotation, Protein,Annotations, Gene,Annotations, Molecular Sequence,Annotations, Protein,Gene Annotations,Molecular Sequence Annotations,Protein Annotations,Sequence Annotation, Molecular,Sequence Annotations, Molecular
D018506 Gene Expression Regulation, Plant Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in plants. Plant Gene Expression Regulation,Regulation of Gene Expression, Plant,Regulation, Gene Expression, Plant
D018507 Gene Expression Regulation, Developmental Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action during the developmental stages of an organism. Developmental Gene Expression Regulation,Embryologic Gene Expression Regulation,Gene Expression Regulation, Embryologic,Regulation of Gene Expression, Developmental,Regulation of Gene Expression, Embryologic,Regulation, Gene Expression, Developmental,Regulation, Gene Expression, Embryologic
D018749 RNA, Plant Ribonucleic acid in plants having regulatory and catalytic roles as well as involvement in protein synthesis. Plant RNA
D020869 Gene Expression Profiling The determination of the pattern of genes expressed at the level of GENETIC TRANSCRIPTION, under specific circumstances or in a specific cell. Gene Expression Analysis,Gene Expression Pattern Analysis,Transcript Expression Analysis,Transcriptome Profiling,Transcriptomics,mRNA Differential Display,Gene Expression Monitoring,Transcriptome Analysis,Analyses, Gene Expression,Analyses, Transcript Expression,Analyses, Transcriptome,Analysis, Gene Expression,Analysis, Transcript Expression,Analysis, Transcriptome,Differential Display, mRNA,Differential Displays, mRNA,Expression Analyses, Gene,Expression Analysis, Gene,Gene Expression Analyses,Gene Expression Monitorings,Gene Expression Profilings,Monitoring, Gene Expression,Monitorings, Gene Expression,Profiling, Gene Expression,Profiling, Transcriptome,Profilings, Gene Expression,Profilings, Transcriptome,Transcript Expression Analyses,Transcriptome Analyses,Transcriptome Profilings,mRNA Differential Displays
D032561 Cotton Fiber A TEXTILE fiber obtained from the pappus (outside the SEEDS) of cotton plant (GOSSYPIUM). Cotton Fibers,Fiber, Cotton,Fibers, Cotton
D035683 MicroRNAs Small double-stranded, non-protein coding RNAs, 21-25 nucleotides in length generated from single-stranded microRNA gene transcripts by the same RIBONUCLEASE III, Dicer, that produces small interfering RNAs (RNA, SMALL INTERFERING). They become part of the RNA-INDUCED SILENCING COMPLEX and repress the translation (TRANSLATION, GENETIC) of target RNA by binding to homologous 3'UTR region as an imperfect match. The small temporal RNAs (stRNAs), let-7 and lin-4, from C. elegans, are the first 2 miRNAs discovered, and are from a class of miRNAs involved in developmental timing. RNA, Small Temporal,Small Temporal RNA,miRNA,stRNA,Micro RNA,MicroRNA,Primary MicroRNA,Primary miRNA,miRNAs,pre-miRNA,pri-miRNA,MicroRNA, Primary,RNA, Micro,Temporal RNA, Small,miRNA, Primary,pre miRNA,pri miRNA

Related Publications

Min Wang, and Runrun Sun, and Chao Li, and Qinglian Wang, and Baohong Zhang
May 2015, Plant biotechnology journal,
Min Wang, and Runrun Sun, and Chao Li, and Qinglian Wang, and Baohong Zhang
January 2006, Methods in molecular biology (Clifton, N.J.),
Min Wang, and Runrun Sun, and Chao Li, and Qinglian Wang, and Baohong Zhang
January 2015, Methods in molecular biology (Clifton, N.J.),
Min Wang, and Runrun Sun, and Chao Li, and Qinglian Wang, and Baohong Zhang
July 1992, Proceedings of the National Academy of Sciences of the United States of America,
Min Wang, and Runrun Sun, and Chao Li, and Qinglian Wang, and Baohong Zhang
December 2014, Planta,
Min Wang, and Runrun Sun, and Chao Li, and Qinglian Wang, and Baohong Zhang
February 2020, International journal of molecular sciences,
Min Wang, and Runrun Sun, and Chao Li, and Qinglian Wang, and Baohong Zhang
November 2012, Science China. Life sciences,
Min Wang, and Runrun Sun, and Chao Li, and Qinglian Wang, and Baohong Zhang
August 1988, Planta,
Min Wang, and Runrun Sun, and Chao Li, and Qinglian Wang, and Baohong Zhang
April 1995, Plant physiology,
Min Wang, and Runrun Sun, and Chao Li, and Qinglian Wang, and Baohong Zhang
August 2007, Plant cell reports,
Copied contents to your clipboard!