Cardiac alpha- and beta-adrenoceptor sensitivity and binding characteristics after chronic reserpine pretreatment. 1987

R G Chess-Williams, and P F Grassby, and K J Broadley, and D J Sheridan
Department of Pharmacology, Welsh School of Pharmacy, University of Wales, Cardiff, UK.

Cardiac alpha- and beta-adrenoceptor sensitivities were examined after chronic pretreatment of rats with reserpine. Increases in sensitivity would indicate that the receptor is under the influence of the sympathetic innervation, removal by catecholamine depletion with reserpine of the tonic effect of neurotransmitter release would permit receptor upregulation. The positive inotropic responses of paced left atria and papillary muscles and the positive chronotropic responses of spontaneously beating right atria were recorded. A concentration-response curve to isoprenaline (beta-adrenoceptor-mediated) was followed, in the presence of beta-blockade, by one to methoxamine (alpha-adrenoceptor-mediated). Methoxamine exerted positive inotropy of left atria and papillary muscles, the maxima being 43.2 +/- 2.7 and 26.8 +/- 4.4% of the isoprenaline maxima. A small positive chronotropy (16.5 +/- 5.6% maximum) of right atria occurred. After pretreatment with reserpine (1.0 mg kg-1 i.p. daily) for 7 days, the three preparations displayed supersensitivity to isoprenaline, revealed as a significant displacement (P less than 0.05) of the concentration-response curves to the left of those for control rats. Reserpine pretreatment, however, had no effect on the sensitivity to methoxamine. The increase in beta-adrenoceptor sensitivity to isoprenaline after reserpine pretreatment was accompanied by a significant 41.3% increase (P less than 0.05) in the number of [3H]-dihydroalprenolol [( 3H]-DHA) binding sites (Bmax) in ventricular membranes, although the dissociation constant (KD) was unaffected. There were more alpha-adrenoceptor [3H]-prazosin binding sites in ventricular than atrial membranes. However, there was no difference in KD or Bmax between reserpine-pretreated and control tissues.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007545 Isoproterenol Isopropyl analog of EPINEPHRINE; beta-sympathomimetic that acts on the heart, bronchi, skeletal muscle, alimentary tract, etc. It is used mainly as bronchodilator and heart stimulant. Isoprenaline,Isopropylarterenol,4-(1-Hydroxy-2-((1-methylethyl)amino)ethyl)-1,2-benzenediol,Euspiran,Isadrin,Isadrine,Isopropyl Noradrenaline,Isopropylnoradrenaline,Isopropylnorepinephrine,Isoproterenol Hydrochloride,Isoproterenol Sulfate,Isuprel,Izadrin,Norisodrine,Novodrin,Hydrochloride, Isoproterenol,Noradrenaline, Isopropyl,Sulfate, Isoproterenol
D008297 Male Males
D008729 Methoxamine An alpha-1 adrenergic agonist that causes prolonged peripheral VASOCONSTRICTION. Methoxamedrin,Methoxamine Hydrochloride,Metoxamine Wellcome,Vasoxin,Vasoxine,Vasoxyl,Vasylox,Hydrochloride, Methoxamine,Wellcome, Metoxamine
D009200 Myocardial Contraction Contractile activity of the MYOCARDIUM. Heart Contractility,Inotropism, Cardiac,Cardiac Inotropism,Cardiac Inotropisms,Contractilities, Heart,Contractility, Heart,Contraction, Myocardial,Contractions, Myocardial,Heart Contractilities,Inotropisms, Cardiac,Myocardial Contractions
D011869 Radioligand Assay Quantitative determination of receptor (binding) proteins in body fluids or tissue using radioactively labeled binding reagents (e.g., antibodies, intracellular receptors, plasma binders). Protein-Binding Radioassay,Radioreceptor Assay,Assay, Radioligand,Assay, Radioreceptor,Assays, Radioligand,Assays, Radioreceptor,Protein Binding Radioassay,Protein-Binding Radioassays,Radioassay, Protein-Binding,Radioassays, Protein-Binding,Radioligand Assays,Radioreceptor Assays
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D011942 Receptors, Adrenergic, alpha One of the two major pharmacological subdivisions of adrenergic receptors that were originally defined by the relative potencies of various adrenergic compounds. The alpha receptors were initially described as excitatory receptors that post-junctionally stimulate SMOOTH MUSCLE contraction. However, further analysis has revealed a more complex picture involving several alpha receptor subtypes and their involvement in feedback regulation. Adrenergic alpha-Receptor,Adrenergic alpha-Receptors,Receptors, alpha-Adrenergic,alpha-Adrenergic Receptor,alpha-Adrenergic Receptors,Receptor, Adrenergic, alpha,Adrenergic alpha Receptor,Adrenergic alpha Receptors,Receptor, alpha-Adrenergic,Receptors, alpha Adrenergic,alpha Adrenergic Receptor,alpha Adrenergic Receptors,alpha-Receptor, Adrenergic,alpha-Receptors, Adrenergic
D011943 Receptors, Adrenergic, beta One of two major pharmacologically defined classes of adrenergic receptors. The beta adrenergic receptors play an important role in regulating CARDIAC MUSCLE contraction, SMOOTH MUSCLE relaxation, and GLYCOGENOLYSIS. Adrenergic beta-Receptor,Adrenergic beta-Receptors,Receptors, beta-Adrenergic,beta Adrenergic Receptor,beta-Adrenergic Receptor,beta-Adrenergic Receptors,Receptor, Adrenergic, beta,Adrenergic Receptor, beta,Adrenergic beta Receptor,Adrenergic beta Receptors,Receptor, beta Adrenergic,Receptor, beta-Adrenergic,Receptors, beta Adrenergic,beta Adrenergic Receptors,beta-Receptor, Adrenergic,beta-Receptors, Adrenergic
D012110 Reserpine An alkaloid found in the roots of Rauwolfia serpentina and R. vomitoria. Reserpine inhibits the uptake of norepinephrine into storage vesicles resulting in depletion of catecholamines and serotonin from central and peripheral axon terminals. It has been used as an antihypertensive and an antipsychotic as well as a research tool, but its adverse effects limit its clinical use. Raunervil,Raupasil,Rausedil,Rausedyl,Serpasil,Serpivite,V-Serp,V Serp
D006321 Heart The hollow, muscular organ that maintains the circulation of the blood. Hearts

Related Publications

R G Chess-Williams, and P F Grassby, and K J Broadley, and D J Sheridan
January 1987, Biochemical pharmacology,
R G Chess-Williams, and P F Grassby, and K J Broadley, and D J Sheridan
September 1982, Naunyn-Schmiedeberg's archives of pharmacology,
R G Chess-Williams, and P F Grassby, and K J Broadley, and D J Sheridan
October 1984, Pharmacological research communications,
R G Chess-Williams, and P F Grassby, and K J Broadley, and D J Sheridan
January 1990, British journal of pharmacology,
R G Chess-Williams, and P F Grassby, and K J Broadley, and D J Sheridan
January 1991, Fundamental & clinical pharmacology,
R G Chess-Williams, and P F Grassby, and K J Broadley, and D J Sheridan
January 1984, Polish journal of pharmacology and pharmacy,
R G Chess-Williams, and P F Grassby, and K J Broadley, and D J Sheridan
September 1969, European journal of pharmacology,
R G Chess-Williams, and P F Grassby, and K J Broadley, and D J Sheridan
June 1986, The Journal of pharmacology and experimental therapeutics,
R G Chess-Williams, and P F Grassby, and K J Broadley, and D J Sheridan
October 1986, Pharmacology, biochemistry, and behavior,
Copied contents to your clipboard!