Molecular rearrangements between two plasmids of the FII incompatibility group in different recombination--deficient Escherichia coli strains. 1987

J M Martínez-Salazar, and M C Gómez-Eichelmann
Departamento de Biología Molecular, Universidad Nacional Autónoma, D.F. Mexico.

The frequencies and types of plasmid molecular rearrangements generated in different recombinant mutants which carried two plasmids of the FII incompatibility group were studied. The wild-type cells generated molecular rearrangements mainly by interplasmidic recombination with a frequency of 2.4 x 10(-6) per cell per cell doubling. Cells in which RecF was the principal recombination pathway generated different types of molecular rearrangements that involved either both plasmids or one of the plasmids and the chromosome. The frequencies of molecular rearrangements for these cells were 50-fold greater than those of wild-type cells. The recA- cells, even when the RecE pathway was derepressed, generated rearrangements only between one of the plasmids and the chromosome, at very low frequencies (10(-9]. In wild-type cells and in RecF cells, interplasmidic recombination generated mainly cointegrates carrying DNA deletions. These cointegrates were stable in recA- or recA- RecE+ cells, but unstable in wild-type or RecF+ cells. In the latter, the cointegrates generated smaller plasmids with different molecular structures at relatively low frequencies.

UI MeSH Term Description Entries
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D004251 DNA Transposable Elements Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom. DNA Insertion Elements,DNA Transposons,IS Elements,Insertion Sequence Elements,Tn Elements,Transposable Elements,Elements, Insertion Sequence,Sequence Elements, Insertion,DNA Insertion Element,DNA Transposable Element,DNA Transposon,Element, DNA Insertion,Element, DNA Transposable,Element, IS,Element, Insertion Sequence,Element, Tn,Element, Transposable,Elements, DNA Insertion,Elements, DNA Transposable,Elements, IS,Elements, Tn,Elements, Transposable,IS Element,Insertion Element, DNA,Insertion Elements, DNA,Insertion Sequence Element,Sequence Element, Insertion,Tn Element,Transposable Element,Transposable Element, DNA,Transposable Elements, DNA,Transposon, DNA,Transposons, DNA
D004352 Drug Resistance, Microbial The ability of microorganisms, especially bacteria, to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS). Antibiotic Resistance,Antibiotic Resistance, Microbial,Antimicrobial Resistance, Drug,Antimicrobial Drug Resistance,Antimicrobial Drug Resistances,Antimicrobial Resistances, Drug,Drug Antimicrobial Resistance,Drug Antimicrobial Resistances,Drug Resistances, Microbial,Resistance, Antibiotic,Resistance, Drug Antimicrobial,Resistances, Drug Antimicrobial
D004587 Electrophoresis, Agar Gel Electrophoresis in which agar or agarose gel is used as the diffusion medium. Electrophoresis, Agarose Gel,Agar Gel Electrophoresis,Agarose Gel Electrophoresis,Gel Electrophoresis, Agar,Gel Electrophoresis, Agarose
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli

Related Publications

J M Martínez-Salazar, and M C Gómez-Eichelmann
January 1984, Revista latinoamericana de microbiologia,
J M Martínez-Salazar, and M C Gómez-Eichelmann
January 1979, Plasmid,
J M Martínez-Salazar, and M C Gómez-Eichelmann
October 1969, Journal of bacteriology,
J M Martínez-Salazar, and M C Gómez-Eichelmann
August 1980, Journal of bacteriology,
J M Martínez-Salazar, and M C Gómez-Eichelmann
July 1972, Journal of general microbiology,
J M Martínez-Salazar, and M C Gómez-Eichelmann
January 1969, Mutation research,
J M Martínez-Salazar, and M C Gómez-Eichelmann
April 1966, Genetics,
J M Martínez-Salazar, and M C Gómez-Eichelmann
January 1993, Biochimie,
J M Martínez-Salazar, and M C Gómez-Eichelmann
January 1993, Enfermedades infecciosas y microbiologia clinica,
Copied contents to your clipboard!