Insulin release by glucagon and secretin: studies with secretin-glucagon hybrids. 1988

H Kofod, and D Andreu, and P Thams, and R B Merrifield, and C J Hedeskov, and B Hansen, and A Lernmark
Hagedorn Research Laboratory, Gentofte, Denmark.

Secretin and glucagon potentiate glucose-induced insulin release. We have compared the effects of secretin and glucagon with that of four hybrid molecules of the two hormones on insulin release and formation of cyclic AMP (cAMP) in isolated mouse pancreatic islets. All six peptides potentiated the release of insulin at 10 mM D-glucose, and their effects were indistinguishable with respect to the dynamics of release, dose-response relationship, and glucose dependency. However, measurements of cAMP accumulation in the presence of the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (10(-4) M) showed that the fold increase compared with glucose alone had the following ranking order: secretin = [Tyr10, Tyr13]-secretin 1.6 less than [Tyr10, Tyr13, Trp25]secretin 1.8 less than glucagon 1.9 less than [Asp3, Glu9, Arg12]glucagon 2.3 = [Asp3, Glu9]glucagon. These results suggest that despite similar potentiating effects of secretin and glucagon on glucose-induced insulin release, their modes of action may be different.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007515 Islets of Langerhans Irregular microscopic structures consisting of cords of endocrine cells that are scattered throughout the PANCREAS among the exocrine acini. Each islet is surrounded by connective tissue fibers and penetrated by a network of capillaries. There are four major cell types. The most abundant beta cells (50-80%) secrete INSULIN. Alpha cells (5-20%) secrete GLUCAGON. PP cells (10-35%) secrete PANCREATIC POLYPEPTIDE. Delta cells (~5%) secrete SOMATOSTATIN. Islands of Langerhans,Islet Cells,Nesidioblasts,Pancreas, Endocrine,Pancreatic Islets,Cell, Islet,Cells, Islet,Endocrine Pancreas,Islet Cell,Islet, Pancreatic,Islets, Pancreatic,Langerhans Islands,Langerhans Islets,Nesidioblast,Pancreatic Islet
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D005934 Glucagon A 29-amino acid pancreatic peptide derived from proglucagon which is also the precursor of intestinal GLUCAGON-LIKE PEPTIDES. Glucagon is secreted by PANCREATIC ALPHA CELLS and plays an important role in regulation of BLOOD GLUCOSE concentration, ketone metabolism, and several other biochemical and physiological processes. (From Gilman et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 9th ed, p1511) Glucagon (1-29),Glukagon,HG-Factor,Hyperglycemic-Glycogenolytic Factor,Proglucagon (33-61),HG Factor,Hyperglycemic Glycogenolytic Factor
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D000078790 Insulin Secretion Production and release of insulin from PANCREATIC BETA CELLS that primarily occurs in response to elevated BLOOD GLUCOSE levels. Secretion, Insulin
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

H Kofod, and D Andreu, and P Thams, and R B Merrifield, and C J Hedeskov, and B Hansen, and A Lernmark
April 1967, South African medical journal = Suid-Afrikaanse tydskrif vir geneeskunde,
H Kofod, and D Andreu, and P Thams, and R B Merrifield, and C J Hedeskov, and B Hansen, and A Lernmark
March 1967, Nordisk medicin,
H Kofod, and D Andreu, and P Thams, and R B Merrifield, and C J Hedeskov, and B Hansen, and A Lernmark
April 1968, Acta endocrinologica,
H Kofod, and D Andreu, and P Thams, and R B Merrifield, and C J Hedeskov, and B Hansen, and A Lernmark
July 1972, The Journal of clinical endocrinology and metabolism,
H Kofod, and D Andreu, and P Thams, and R B Merrifield, and C J Hedeskov, and B Hansen, and A Lernmark
December 1988, Regulatory peptides,
H Kofod, and D Andreu, and P Thams, and R B Merrifield, and C J Hedeskov, and B Hansen, and A Lernmark
November 2002, Digestive diseases and sciences,
H Kofod, and D Andreu, and P Thams, and R B Merrifield, and C J Hedeskov, and B Hansen, and A Lernmark
January 1976, Surgical forum,
H Kofod, and D Andreu, and P Thams, and R B Merrifield, and C J Hedeskov, and B Hansen, and A Lernmark
June 1978, The Journal of clinical endocrinology and metabolism,
H Kofod, and D Andreu, and P Thams, and R B Merrifield, and C J Hedeskov, and B Hansen, and A Lernmark
October 1978, Endocrinologia japonica,
H Kofod, and D Andreu, and P Thams, and R B Merrifield, and C J Hedeskov, and B Hansen, and A Lernmark
April 1976, Lancet (London, England),
Copied contents to your clipboard!