Genetic variants of human red-cell membrane sialoglycoprotein beta. Study of the alterations occurring in the sialoglycoprotein-beta gene. 1988

M J Tanner, and S High, and P G Martin, and D J Anstee, and P A Judson, and T J Jones
Department of Biochemistry, University of Bristol, U.K.

We have studied the DNA of individuals who express an altered sialoglycoprotein beta on their red cells by using Southern blotting with sialoglycoprotein-beta cDNA probes. Individuals of the Leach phenotype do not express any beta (sialoglycoprotein beta) or gamma (sialoglycoprotein gamma) on their red cells, and we show that about 7 kb of DNA, including the 3' end of the beta gene, is deleted in this DNA. Any protein product of this gene is likely to lack the membrane-associating domain of beta. We have also examined the DNA of two types of other individuals (Yus-type and Gerbich-type) who have red cells that lack beta and gamma, but contain abnormal sialoglycoproteins related to beta. These two types of DNA contain different internal deletions of about 6 kb in the beta gene. We suggest that these deletions result from the presence of two different sets of internal homology in the beta gene, and on this basis we propose structures for the abnormal Yus-type and Gerbich-type sialoglycoproteins which are consistent with the other evidence that is available. We provide evidence that beta and gamma are products of the same gene and suggest a possible mechanism for the origin of gamma based on leaky initiation of translation of beta mRNA.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004587 Electrophoresis, Agar Gel Electrophoresis in which agar or agarose gel is used as the diffusion medium. Electrophoresis, Agarose Gel,Agar Gel Electrophoresis,Agarose Gel Electrophoresis,Gel Electrophoresis, Agar,Gel Electrophoresis, Agarose
D004910 Erythrocyte Membrane The semi-permeable outer structure of a red blood cell. It is known as a red cell 'ghost' after HEMOLYSIS. Erythrocyte Ghost,Red Cell Cytoskeleton,Red Cell Ghost,Erythrocyte Cytoskeleton,Cytoskeleton, Erythrocyte,Cytoskeleton, Red Cell,Erythrocyte Cytoskeletons,Erythrocyte Ghosts,Erythrocyte Membranes,Ghost, Erythrocyte,Ghost, Red Cell,Membrane, Erythrocyte,Red Cell Cytoskeletons,Red Cell Ghosts
D004913 Erythrocytes, Abnormal Oxygen-carrying RED BLOOD CELLS in mammalian blood that are abnormal in structure or function. Abnormal Erythrocytes,Abnormal Erythrocyte,Erythrocyte, Abnormal
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

M J Tanner, and S High, and P G Martin, and D J Anstee, and P A Judson, and T J Jones
January 1983, Physiological reviews,
M J Tanner, and S High, and P G Martin, and D J Anstee, and P A Judson, and T J Jones
June 1985, Biochimica et biophysica acta,
M J Tanner, and S High, and P G Martin, and D J Anstee, and P A Judson, and T J Jones
March 1991, Biochemistry international,
M J Tanner, and S High, and P G Martin, and D J Anstee, and P A Judson, and T J Jones
January 1980, Hemoglobin,
M J Tanner, and S High, and P G Martin, and D J Anstee, and P A Judson, and T J Jones
January 1989, Medical laboratory sciences,
M J Tanner, and S High, and P G Martin, and D J Anstee, and P A Judson, and T J Jones
January 1987, Transfusion,
M J Tanner, and S High, and P G Martin, and D J Anstee, and P A Judson, and T J Jones
July 1973, Biochemistry,
M J Tanner, and S High, and P G Martin, and D J Anstee, and P A Judson, and T J Jones
December 1982, American journal of hematology,
M J Tanner, and S High, and P G Martin, and D J Anstee, and P A Judson, and T J Jones
January 1988, Indian journal of biochemistry & biophysics,
M J Tanner, and S High, and P G Martin, and D J Anstee, and P A Judson, and T J Jones
January 1971, Annals of clinical laboratory science,
Copied contents to your clipboard!