Efficient integrative transformation of Cephalosporium acremonium. 1987

P L Skatrud, and S W Queener, and L G Carr, and D L Fisher
Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis 46202.

A hybrid gene, IPNSp/HPTorf, was constructed by placing an 850 bp sequence of Cephalosporium acremonium DNA next to the 5' end of a bacterial open reading frame, HPTorf. The sequence was obtained as an 850 bp NcoI restriction fragment from the 5' non-coding region of the C. acremonium isopenicillin N synthetase (IPNS) gene. The HPTorf was obtained from a bacterial gene that coded for a hygromycin B phosphotransferase (HPT). Plasmids that contained IPNSp/HPTorf transformed C. acremonium to a stably maintained hygromycin B resistant phenotype. Southern analysis of total DNA from transformants demonstrated multiple integrations of the transforming DNA in the high molecular weight DNA of most transformants, but single integrations were observed in a few transformants. The number of transformants per microgram of DNA was about 100 times greater than for plasmids that contained the HPTorf without any juxtaposed eucaryotic promoter sequence. Plasmids with the promoterless HPTorf and plasmids with a truncated S. cerevisiae phosphoglycerate kinase promoter juxtaposed to the HPTorf transformed C. acremonium at equivalent low frequencies. Transformation of C. acremonium with linearized plasmid DNA produced at least 2-3 fold more transformants than the corresponding circular molecule. Several observations were made concerning protoplast formation and handling which made the transformation procedure more efficient and allowed a greater proportion of protoplasts to regenerate to viable walled cells. Plasmids were constructed that contained both the IPNSp/HPTorf and additional elements: fragments of C. acremonium ribosomal DNA (rDNA), or a fragment of C. acremonium mitochondrial DNA possessing activity as an autonomous replication sequence (ARS) in S. cerevisiae, or putative transcriptional termination/polyadenylation signals from the IPNS gene. These plasmids transformed C. acremonium at frequencies experimentally equivalent to those containing IPNSp/HPTorf without any of these additional elements.

UI MeSH Term Description Entries
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D010770 Phosphotransferases A rather large group of enzymes comprising not only those transferring phosphate but also diphosphate, nucleotidyl residues, and others. These have also been subdivided according to the acceptor group. (From Enzyme Nomenclature, 1992) EC 2.7. Kinases,Phosphotransferase,Phosphotransferases, ATP,Transphosphorylase,Transphosphorylases,Kinase,ATP Phosphotransferases
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D005800 Genes, Fungal The functional hereditary units of FUNGI. Fungal Genes,Fungal Gene,Gene, Fungal
D000164 Acremonium A mitosporic fungal genus with many reported ascomycetous teleomorphs. Cephalosporin antibiotics are derived from this genus. Cephalosporium,Acremoniums,Cephalosporiums
D014170 Transformation, Genetic Change brought about to an organisms genetic composition by unidirectional transfer (TRANSFECTION; TRANSDUCTION, GENETIC; CONJUGATION, GENETIC, etc.) and incorporation of foreign DNA into prokaryotic or eukaryotic cells by recombination of part or all of that DNA into the cell's genome. Genetic Transformation,Genetic Transformations,Transformations, Genetic

Related Publications

P L Skatrud, and S W Queener, and L G Carr, and D L Fisher
September 1955, Ceskoslovenska gynekologie,
P L Skatrud, and S W Queener, and L G Carr, and D L Fisher
June 1990, Gene,
P L Skatrud, and S W Queener, and L G Carr, and D L Fisher
January 1972, Pathologia et microbiologia,
P L Skatrud, and S W Queener, and L G Carr, and D L Fisher
June 1982, The Journal of the Indiana State Medical Association,
P L Skatrud, and S W Queener, and L G Carr, and D L Fisher
November 1971, Applied microbiology,
P L Skatrud, and S W Queener, and L G Carr, and D L Fisher
November 1974, Mycopathologia et mycologia applicata,
P L Skatrud, and S W Queener, and L G Carr, and D L Fisher
June 1964, Mycopathologia et mycologia applicata,
P L Skatrud, and S W Queener, and L G Carr, and D L Fisher
January 1987, Hindustan antibiotics bulletin,
P L Skatrud, and S W Queener, and L G Carr, and D L Fisher
March 1986, FEBS letters,
P L Skatrud, and S W Queener, and L G Carr, and D L Fisher
January 1979, Revista do Instituto de Medicina Tropical de Sao Paulo,
Copied contents to your clipboard!