Actions of acetylcholine in the guinea-pig and cat medial and lateral geniculate nuclei, in vitro. 1987

D A McCormick, and D A Prince
Department of Neurology, Stanford University School of Medicine, CA 94305.

1. The mechanisms of action of acetylcholine (ACh) in the medial (m.g.n.) and dorsal lateral geniculate (l.g.n.d.) nuclei were investigated using intracellular recordings techniques in guinea-pig and cat in vitro thalamic slices. 2. Application of ACh to neurones in guinea-pig geniculate nuclei resulted in a hyperpolarization in all neurones followed by a slow depolarization in 52% of l.g.n.d. and 46% of m.g.n. neurones. Neither the hyperpolarization nor the slow depolarization were eliminated by blockade of synaptic transmission and both were activated by acetyl-beta-methylcholine and DL-muscarine and blocked by scopolamine, indicating that these responses are mediated by direct activation of muscarinic receptors on the cells studied. 3. The ACh-induced hyperpolarization was associated with an increase in apparent input conductance (Gi) of 4-13 nS. The reversal potential of the ACh-induced hyperpolarization varied in a Nernstian manner with changes in extracellular [K+] and was greatly reduced by bath application of the K+ antagonist Ba2+ or intracellular injection of Cs+. These findings show that the muscarinic hyperpolarization is mediated by an increase in K+ conductance. 4. The ACh-induced slow depolarization was associated with a decrease in Gi of 2-15 nS, had an extrapolated reversal potential near EK, and was sensitive to [K+]o, indicating that this response is due to a decrease in K+ conductance. 5. In contrast to effects on guinea-pig geniculate neurones, applications of ACh to cat l.g.n.d. and m.g.n. cells resulted in a rapid depolarization in nearly all cells, followed in some neurones by a hyperpolarization and/or a slow depolarization. The rapid excitatory response was associated with an increase in membrane conductance, had an estimated reversal potential of -49 to -4 mV and may be mediated by nicotinic receptors. The hyperpolarization and slow depolarization were similar to those of the guinea-pig in that they were associated with an increase and decrease, respectively, of Gi, and were mediated by muscarinic receptors. 6. The muscarinic hyperpolarization interacted with the intrinsic properties of the thalamic neurones to inhibit single-spike activity while promoting the occurrence of burst discharges. The muscarinic slow depolarization had the opposite effect; it brought the membrane potential into the range where burst firing was blocked and single-spike firing predominated. Depending upon the membrane potential, the rapid excitatory response of cat geniculate neurones could activate either a burst or a train of action potentials.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D008297 Male Males
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010277 Parasympathomimetics Drugs that mimic the effects of parasympathetic nervous system activity. Included here are drugs that directly stimulate muscarinic receptors and drugs that potentiate cholinergic activity, usually by slowing the breakdown of acetylcholine (CHOLINESTERASE INHIBITORS). Drugs that stimulate both sympathetic and parasympathetic postganglionic neurons (GANGLIONIC STIMULANTS) are not included here. Parasympathomimetic Agents,Parasympathomimetic Drugs,Parasympathomimetic Effect,Parasympathomimetic Effects,Agents, Parasympathomimetic,Drugs, Parasympathomimetic,Effect, Parasympathomimetic,Effects, Parasympathomimetic
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D002586 Cesium A member of the alkali metals. It has an atomic symbol Cs, atomic number 55, and atomic weight 132.91. Cesium has many industrial applications, including the construction of atomic clocks based on its atomic vibrational frequency. Caesium,Caesium-133,Cesium-133,Caesium 133,Cesium 133
D005260 Female Females
D005731 Ganglionic Stimulants Agents that mimic neural transmission by stimulation of the nicotinic receptors on postganglionic autonomic neurons. Drugs that indirectly augment ganglionic transmission by increasing the release or slowing the breakdown of acetylcholine or by non-nicotinic effects on postganglionic neurons are not included here nor are the nonspecific cholinergic agonists. Stimulants, Ganglionic
D005829 Geniculate Bodies Part of the DIENCEPHALON inferior to the caudal end of the dorsal THALAMUS. Includes the lateral geniculate body which relays visual impulses from the OPTIC TRACT to the calcarine cortex, and the medial geniculate body which relays auditory impulses from the lateral lemniscus to the AUDITORY CORTEX. Lateral Geniculate Body,Medial Geniculate Body,Metathalamus,Corpus Geniculatum Mediale,Geniculate Nucleus,Lateral Geniculate Nucleus,Medial Geniculate Complex,Medial Geniculate Nucleus,Nucleus Geniculatus Lateralis Dorsalis,Nucleus Geniculatus Lateralis Pars Dorsalis,Bodies, Geniculate,Complex, Medial Geniculate,Complices, Medial Geniculate,Corpus Geniculatum Mediales,Geniculate Bodies, Lateral,Geniculate Bodies, Medial,Geniculate Body,Geniculate Body, Lateral,Geniculate Body, Medial,Geniculate Complex, Medial,Geniculate Complices, Medial,Geniculate Nucleus, Lateral,Geniculate Nucleus, Medial,Geniculatum Mediale, Corpus,Geniculatum Mediales, Corpus,Lateral Geniculate Bodies,Medial Geniculate Bodies,Medial Geniculate Complices,Mediale, Corpus Geniculatum,Mediales, Corpus Geniculatum,Nucleus, Geniculate,Nucleus, Lateral Geniculate,Nucleus, Medial Geniculate
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea

Related Publications

D A McCormick, and D A Prince
September 1971, The Journal of comparative neurology,
D A McCormick, and D A Prince
May 2000, Experimental brain research,
D A McCormick, and D A Prince
January 2013, Frontiers in aging neuroscience,
D A McCormick, and D A Prince
June 2007, Hearing research,
D A McCormick, and D A Prince
January 1966, Folia morphologica,
D A McCormick, and D A Prince
July 1987, Journal of neuroscience methods,
Copied contents to your clipboard!