Molecular size of the Na+-H+ antiport in renal brush border membranes, as estimated by radiation inactivation. 1988

R Béliveau, and M Demeule, and M Potier
Groupe de Recherche en Transport Membranaire (Univ. Montréal), Québec.

The radiation inactivation method was applied to brush border membrane vesicles from rat kidney, in order to estimate the molecular size of the Na+-H+ antiporter. Sodium influx (1mM) driven by an acid intravesicular pH was unaffected by the high osmolarity of the cryoprotective solution. Initial rate of influx was estimated by linear regression performed on the first 10 seconds of transport: 0.512 pmol/micrograms protein/s. There was no binding component involved. Incubation performed in the presence of 1 mM amiloride, an inhibitor of the Na+-H+ antiport gave an initial rate of only 0.071 pmol/microgram/s, an 82% inhibition. Membrane vesicles were irradiated at -78 degrees C in a Gammacel Model 220. Sodium influx was reduced, as the dose of radiation increased, but the influx remained linear for the period of time (10s) during which the initial rate was estimated, indicating no alteration of the proton driving force during this time period. Amiloride-insensitive flux remained totally unaffected by the radiation dose, indicating that the passive permeability of the membrane towards sodium was unaffected. The amiloride-sensitive pathway presented a monoexponential profile of inactivation, allowing the molecular size to be estimated at 321 kDa. Based on DCCD-binding studies suggesting the molecular size of the monomer to be around 65 kDa for rat kidney, our results suggest that the functional transporter in the membrane to be a multimer.

UI MeSH Term Description Entries
D007672 Kidney Cortex The outer zone of the KIDNEY, beneath the capsule, consisting of KIDNEY GLOMERULUS; KIDNEY TUBULES, DISTAL; and KIDNEY TUBULES, PROXIMAL. Cortex, Kidney
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008871 Microvilli Minute projections of cell membranes which greatly increase the surface area of the cell. Brush Border,Striated Border,Border, Brush,Border, Striated,Borders, Brush,Borders, Striated,Brush Borders,Microvillus,Striated Borders
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D000584 Amiloride A pyrazine compound inhibiting SODIUM reabsorption through SODIUM CHANNELS in renal EPITHELIAL CELLS. This inhibition creates a negative potential in the luminal membranes of principal cells, located in the distal convoluted tubule and collecting duct. Negative potential reduces secretion of potassium and hydrogen ions. Amiloride is used in conjunction with DIURETICS to spare POTASSIUM loss. (From Gilman et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 9th ed, p705) Amidal,Amiduret Trom,Amiloberag,Amiloride Hydrochloride,Amiloride Hydrochloride, Anhydrous,Kaluril,Midamor,Midoride,Modamide,Anhydrous Amiloride Hydrochloride,Hydrochloride, Amiloride,Hydrochloride, Anhydrous Amiloride,Trom, Amiduret
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012964 Sodium A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23. Sodium Ion Level,Sodium-23,Ion Level, Sodium,Level, Sodium Ion,Sodium 23
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D017923 Sodium-Hydrogen Exchangers A family of plasma membrane exchange glycoprotein antiporters that transport sodium ions and protons across lipid bilayers. They have critical functions in intracellular pH regulation, cell volume regulation, and cellular response to many different hormones and mitogens. Na(+)-H(+)-Antiporter,Na(+)-H(+)-Exchanger,Sodium-Hydrogen Antiporter,Na(+)-H(+)-Antiporters,Na(+)-H(+)-Exchangers,SLC9 Na(+)-H(+) Exchangers,SLC9 Protein Family,SLC9 Proteins,SLC9-NHE Protein Family,Sodium-Hydrogen Antiporters,Sodium-Hydrogen Exchanger,Sodium-Proton Antiporter,Sodium-Proton Antiporters,Solute Carrier 9 Protein Family,Solute Carrier 9 Proteins,Antiporter, Sodium-Hydrogen,Antiporter, Sodium-Proton,Antiporters, Sodium-Hydrogen,Antiporters, Sodium-Proton,Exchanger, Sodium-Hydrogen,Exchangers, Sodium-Hydrogen,Protein Family, SLC9,Protein Family, SLC9-NHE,SLC9 NHE Protein Family,Sodium Hydrogen Antiporter,Sodium Hydrogen Antiporters,Sodium Hydrogen Exchanger,Sodium Hydrogen Exchangers,Sodium Proton Antiporter,Sodium Proton Antiporters

Related Publications

R Béliveau, and M Demeule, and M Potier
October 1989, Kidney international,
R Béliveau, and M Demeule, and M Potier
August 1988, The Journal of biological chemistry,
R Béliveau, and M Demeule, and M Potier
November 1991, The American journal of physiology,
R Béliveau, and M Demeule, and M Potier
June 1985, Proceedings of the National Academy of Sciences of the United States of America,
R Béliveau, and M Demeule, and M Potier
January 1992, Clinical and experimental hypertension. Part A, Theory and practice,
R Béliveau, and M Demeule, and M Potier
September 1987, The American journal of physiology,
R Béliveau, and M Demeule, and M Potier
July 1989, The Journal of biological chemistry,
R Béliveau, and M Demeule, and M Potier
December 1990, Kidney international,
R Béliveau, and M Demeule, and M Potier
April 1990, The American journal of physiology,
Copied contents to your clipboard!