Activities of octopamine and synephrine stereoisomers on alpha-adrenoceptors. 1988

C M Brown, and J C McGrath, and J M Midgley, and A G Muir, and J W O'Brien, and C M Thonoor, and C M Williams, and V G Wilson
Department of Pharmacology, Syntex Research Centre, Riccarton, Edinburgh, Scotland.

1. The activities of the (-)- and (+)-forms of m- and p-octopamine and m- and p-synephrine on alpha 1-adrenoceptors from rat aorta and anococcygeus and alpha 2-adrenoceptors from rabbit saphenous vein were compared with those of noradrenaline (NA). 2. The rank order of potency of the (-)-forms on alpha 1-adrenoceptors from rat aorta and alpha 2-adrenoceptors was NA greater than m-octopamine = m-synephrine greater than p-octopamine = p-synephrine. The two m-compounds were 6 fold less active than NA on alpha 1-adrenoceptors from rat aorta and 150 fold less active on alpha 2-adrenoceptors. The two p- compounds were 1,000 fold less active than NA on both alpha 1-adrenoceptors from rat aorta and alpha 2-adrenoceptors. The rank order of potency of the (-)- forms on alpha 1-adrenoceptors from rat anococcygeus was NA = m-synephrine greater than m-octopamine greater than p-octopamine = p-synephrine. m-Octopamine was 4 fold less active than NA and (-)-m-synephrine. The two p- compounds were 30 fold less active than NA. 3. The rank order of potency of the (+)- forms was NA greater than m-octopamine greater than m-synephrine greater than p-octopamine greater than p-synephrine on both alpha 1- and alpha 2-adrenoceptors. The potency of each (+)- form was 1-2 orders of magnitude less than that of the (-) counterpart, the differences being greater for the stereoisomers of synephrine than for those of octopamine on both alpha 1- and alpha 2-adrenoceptors. 4. The yohimbine diastereoisomer antagonists, rauwolscine and corynanthine, were tested against (-)-NA and (-)-m-octopamine-induced contractions in both preparations. Based upon the known selectivities of these isomers for alpha-adrenoceptor subtypes, it is concluded that the rat aorta contains only alpha 1-adrenoceptors while the rabbit saphenous vein possesses predominantly alpha 2-adrenoceptors. 5. Ligand binding data for the octopamine and synephrine stereoisomers at alpha 1- and alpha 2-binding sites from rat cerebral cortex was also obtained. (-)-Forms were more active than (+)-forms. The rank order of affinity of the (-)-forms for both alpha 1- and alpha 2-binding sites was NA greater than m-octopamine = m-synephrine greater than p-synephrine greater than p-octopamine. The relative affinities of the members of the series against alpha 1-binding sites were very similar to their relative functional activities on rat aorta. However, the affinities of both m- and p-compounds relative to that of ( -)-NA were much greater at the x2-binding sites than were the relative activities in rabbit saphenous vein, possibly suggesting low intrinsic efficacy. Functional antagonist responses to NA by the (-)-octopamine and synephrines could not, however, be demonstrated on rat aorta or rabbit saphenous vein. 6. The activities of m-octopamine and m-synephrine were not significantly different from each other on either a,-adrenoceptors from rat aorta or x2-adrenoceptors; however, m-synephrine is more active than m-octopamine on a,-adrenoceptors from rat anococcygeus. Both m-octopamine and msynephrine can be considered to be naturally occurring x,-selective amines. However, if m- and poctopamine are co-released with NA in amounts proportional to their concentration, it is concluded that their activities on m,- and x2-adrenoceptors are too low to be physiologically significant.

UI MeSH Term Description Entries
D008297 Male Males
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D009655 Octopamine An alpha-adrenergic sympathomimetic amine, biosynthesized from tyramine in the CNS and platelets and also in invertebrate nervous systems. It is used to treat hypotension and as a cardiotonic. The natural D(-) form is more potent than the L(+) form in producing cardiovascular adrenergic responses. It is also a neurotransmitter in some invertebrates. Norsynephrine,p-Octopamine,para-Octopamine,4-Octopamine,Norsympatol,alpha-(Aminoethyl)-4-hydroxybenzenemethanol
D010627 Phenethylamines A group of compounds that are derivatives of beta- aminoethylbenzene which is structurally and pharmacologically related to amphetamine. (From Merck Index, 11th ed) Phenylethylamines
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D011942 Receptors, Adrenergic, alpha One of the two major pharmacological subdivisions of adrenergic receptors that were originally defined by the relative potencies of various adrenergic compounds. The alpha receptors were initially described as excitatory receptors that post-junctionally stimulate SMOOTH MUSCLE contraction. However, further analysis has revealed a more complex picture involving several alpha receptor subtypes and their involvement in feedback regulation. Adrenergic alpha-Receptor,Adrenergic alpha-Receptors,Receptors, alpha-Adrenergic,alpha-Adrenergic Receptor,alpha-Adrenergic Receptors,Receptor, Adrenergic, alpha,Adrenergic alpha Receptor,Adrenergic alpha Receptors,Receptor, alpha-Adrenergic,Receptors, alpha Adrenergic,alpha Adrenergic Receptor,alpha Adrenergic Receptors,alpha-Receptor, Adrenergic,alpha-Receptors, Adrenergic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001013 Aorta, Thoracic The portion of the descending aorta proceeding from the arch of the aorta and extending to the DIAPHRAGM, eventually connecting to the ABDOMINAL AORTA. Aorta, Ascending,Aorta, Descending,Aortic Arch,Aortic Root,Arch of the Aorta,Descending Aorta,Sinotubular Junction,Ascending Aorta,Thoracic Aorta,Aortic Roots,Arch, Aortic,Ascending Aortas,Junction, Sinotubular,Root, Aortic,Sinotubular Junctions

Related Publications

C M Brown, and J C McGrath, and J M Midgley, and A G Muir, and J W O'Brien, and C M Thonoor, and C M Williams, and V G Wilson
September 1987, The Journal of pharmacy and pharmacology,
C M Brown, and J C McGrath, and J M Midgley, and A G Muir, and J W O'Brien, and C M Thonoor, and C M Williams, and V G Wilson
December 1988, The Journal of pharmacy and pharmacology,
C M Brown, and J C McGrath, and J M Midgley, and A G Muir, and J W O'Brien, and C M Thonoor, and C M Williams, and V G Wilson
August 2020, Phytotherapy research : PTR,
C M Brown, and J C McGrath, and J M Midgley, and A G Muir, and J W O'Brien, and C M Thonoor, and C M Williams, and V G Wilson
June 2013, The journal of physical chemistry. A,
C M Brown, and J C McGrath, and J M Midgley, and A G Muir, and J W O'Brien, and C M Thonoor, and C M Williams, and V G Wilson
August 1986, Archives internationales de pharmacodynamie et de therapie,
C M Brown, and J C McGrath, and J M Midgley, and A G Muir, and J W O'Brien, and C M Thonoor, and C M Williams, and V G Wilson
July 2001, Naunyn-Schmiedeberg's archives of pharmacology,
C M Brown, and J C McGrath, and J M Midgley, and A G Muir, and J W O'Brien, and C M Thonoor, and C M Williams, and V G Wilson
October 1984, British journal of pharmacology,
C M Brown, and J C McGrath, and J M Midgley, and A G Muir, and J W O'Brien, and C M Thonoor, and C M Williams, and V G Wilson
May 2024, ACS synthetic biology,
C M Brown, and J C McGrath, and J M Midgley, and A G Muir, and J W O'Brien, and C M Thonoor, and C M Williams, and V G Wilson
April 1988, Neuroscience letters,
C M Brown, and J C McGrath, and J M Midgley, and A G Muir, and J W O'Brien, and C M Thonoor, and C M Williams, and V G Wilson
February 1983, British journal of pharmacology,
Copied contents to your clipboard!