Mitochondrial DNA damage and oxidative damage in HL-60 cells exposed to 900MHz radiofrequency fields. 2017

Yulong Sun, and Lin Zong, and Zhen Gao, and Shunxing Zhu, and Jian Tong, and Yi Cao
School of Public Health, Soochow University, Suzhou, Jiangsu Province, PR China.

HL-60 cells, derived from human promyelocytic leukemia, were exposed to continuous wave 900MHz radiofrequency fields (RF) at 120μW/cm2 power intensity for 4h/day for 5 consecutive days to examine whether such exposure is capable damaging the mitochondrial DNA (mtDNA) mediated through the production of reactive oxygen species (ROS). In addition, the effect of RF exposure was examined on 8-hydroxy-2'-dexoyguanosine (8-OHdG) which is a biomarker for oxidative damage and on the mitochondrial synthesis of adenosine triphosphate (ATP) which is the energy required for cellular functions. The results indicated a significant increase in ROS and significant decreases in mitochondrial transcription factor A, mtDNA polymerase gamma, mtDNA transcripts and mtDNA copy number in RF-exposed cells compared with those in sham-exposed control cells. In addition, there was a significant increase in 8-OHdG and a significant decrease in ATP in RF-exposed cells. The response in positive control cells exposed to gamma radiation (GR, which is also known to induce ROS) was similar to those in RF-exposed cells. Thus, the overall data indicated that RF exposure was capable of inducing mtDNA damage mediated through ROS pathway which also induced oxidative damage. Prior-treatment of RF- and GR-exposed the cells with melatonin, a well-known free radical scavenger, reversed the effects observed in RF-exposed cells.

UI MeSH Term Description Entries
D011846 Radio Waves Electromagnetic waves with frequencies between about 3 kilohertz (very low frequency - VLF) and 300,000 megahertz (extremely high frequency - EHF). They are used in television and radio broadcasting, land and satellite communications systems, radionavigation, radiolocation, and DIATHERMY. The highest frequency radio waves are MICROWAVES. Hertzian Waves,High Frequency Waves,Radiowave,Radiowaves,Short Waves,Very High Frequency Waves,Frequency Wave, High,Frequency Waves, High,High Frequency Wave,Radio Wave,Short Wave,Wave, High Frequency,Wave, Radio,Wave, Short,Waves, Hertzian,Waves, High Frequency,Waves, Radio,Waves, Short
D003849 Deoxyguanosine A nucleoside consisting of the base guanine and the sugar deoxyribose.
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004272 DNA, Mitochondrial Double-stranded DNA of MITOCHONDRIA. In eukaryotes, the mitochondrial GENOME is circular and codes for ribosomal RNAs, transfer RNAs, and about 10 proteins. Mitochondrial DNA,mtDNA
D004307 Dose-Response Relationship, Radiation The relationship between the dose of administered radiation and the response of the organism or tissue to the radiation. Dose Response Relationship, Radiation,Dose-Response Relationships, Radiation,Radiation Dose-Response Relationship,Radiation Dose-Response Relationships,Relationship, Radiation Dose-Response,Relationships, Radiation Dose-Response
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000080242 8-Hydroxy-2'-Deoxyguanosine Common oxidized form of deoxyguanosine in which C-8 position of guanine base has a carbonyl group. 2'-Deoxy-7,8-Dihydro-8-Oxoguanosine,2'-Deoxy-8-Hydroxyguanosine,2'-Deoxy-8-Oxo-7,8-Dihydroguanosine,2'-Deoxy-8-Oxoguanosine,7,8-Dihydro-8-Oxo-2'-Deoxyguanosine,7-Hydro-8-Oxodeoxyguanosine,8-Hydroxydeoxyguanosine,8-Oxo-2'-Deoxyguanosine,8-Oxo-7,8-Dihydro-2'-Deoxyguanosine,8-Oxo-7,8-Dihydrodeoxyguanosine,8-Oxo-7-Hydrodeoxyguanosine,8-Oxo-Deoxyguanosine,8OHdG,8-OH-dG,8-oxo-dG,8-oxo-dGuo,8-oxodG,8-oxodGuo,2' Deoxy 7,8 Dihydro 8 Oxoguanosine,2' Deoxy 8 Hydroxyguanosine,2' Deoxy 8 Oxo 7,8 Dihydroguanosine,2' Deoxy 8 Oxoguanosine,7 Hydro 8 Oxodeoxyguanosine,7,8 Dihydro 8 Oxo 2' Deoxyguanosine,8 Hydroxy 2' Deoxyguanosine,8 Hydroxydeoxyguanosine,8 Oxo 2' Deoxyguanosine,8 Oxo 7 Hydrodeoxyguanosine,8 Oxo 7,8 Dihydro 2' Deoxyguanosine,8 Oxo 7,8 Dihydrodeoxyguanosine,8 Oxo Deoxyguanosine
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D017382 Reactive Oxygen Species Molecules or ions formed by the incomplete one-electron reduction of oxygen. These reactive oxygen intermediates include SINGLET OXYGEN; SUPEROXIDES; PEROXIDES; HYDROXYL RADICAL; and HYPOCHLOROUS ACID. They contribute to the microbicidal activity of PHAGOCYTES, regulation of SIGNAL TRANSDUCTION and GENE EXPRESSION, and the oxidative damage to NUCLEIC ACIDS; PROTEINS; and LIPIDS. Active Oxygen Species,Oxygen Radical,Oxygen Radicals,Pro-Oxidant,Reactive Oxygen Intermediates,Active Oxygen,Oxygen Species, Reactive,Pro-Oxidants,Oxygen, Active,Pro Oxidant,Pro Oxidants,Radical, Oxygen
D018384 Oxidative Stress A disturbance in the prooxidant-antioxidant balance in favor of the former, leading to potential damage. Indicators of oxidative stress include damaged DNA bases, protein oxidation products, and lipid peroxidation products (Sies, Oxidative Stress, 1991, pxv-xvi). Anti-oxidative Stress,Antioxidative Stress,DNA Oxidative Damage,Nitro-Oxidative Stress,Oxidative Cleavage,Oxidative DNA Damage,Oxidative Damage,Oxidative Injury,Oxidative Nitrative Stress,Oxidative Stress Injury,Oxidative and Nitrosative Stress,Stress, Oxidative,Anti oxidative Stress,Anti-oxidative Stresses,Antioxidative Stresses,Cleavage, Oxidative,DNA Damage, Oxidative,DNA Oxidative Damages,Damage, DNA Oxidative,Damage, Oxidative,Damage, Oxidative DNA,Injury, Oxidative,Injury, Oxidative Stress,Nitrative Stress, Oxidative,Nitro Oxidative Stress,Nitro-Oxidative Stresses,Oxidative Cleavages,Oxidative DNA Damages,Oxidative Damage, DNA,Oxidative Damages,Oxidative Injuries,Oxidative Nitrative Stresses,Oxidative Stress Injuries,Oxidative Stresses,Stress Injury, Oxidative,Stress, Anti-oxidative,Stress, Antioxidative,Stress, Nitro-Oxidative,Stress, Oxidative Nitrative,Stresses, Nitro-Oxidative

Related Publications

Yulong Sun, and Lin Zong, and Zhen Gao, and Shunxing Zhu, and Jian Tong, and Yi Cao
October 2015, Mutation research. Genetic toxicology and environmental mutagenesis,
Yulong Sun, and Lin Zong, and Zhen Gao, and Shunxing Zhu, and Jian Tong, and Yi Cao
May 2014, Journal of experimental & clinical cancer research : CR,
Yulong Sun, and Lin Zong, and Zhen Gao, and Shunxing Zhu, and Jian Tong, and Yi Cao
November 2001, Chemical research in toxicology,
Yulong Sun, and Lin Zong, and Zhen Gao, and Shunxing Zhu, and Jian Tong, and Yi Cao
March 2015, International journal of radiation biology,
Yulong Sun, and Lin Zong, and Zhen Gao, and Shunxing Zhu, and Jian Tong, and Yi Cao
September 1998, Free radical biology & medicine,
Yulong Sun, and Lin Zong, and Zhen Gao, and Shunxing Zhu, and Jian Tong, and Yi Cao
March 2013, Mutation research,
Yulong Sun, and Lin Zong, and Zhen Gao, and Shunxing Zhu, and Jian Tong, and Yi Cao
January 2012, PloS one,
Yulong Sun, and Lin Zong, and Zhen Gao, and Shunxing Zhu, and Jian Tong, and Yi Cao
November 1992, Biochemical and biophysical research communications,
Yulong Sun, and Lin Zong, and Zhen Gao, and Shunxing Zhu, and Jian Tong, and Yi Cao
August 2013, Mutation research,
Yulong Sun, and Lin Zong, and Zhen Gao, and Shunxing Zhu, and Jian Tong, and Yi Cao
March 2005, Free radical research,
Copied contents to your clipboard!