MiR-2425-5p targets RAD9A and MYOG to regulate the proliferation and differentiation of bovine skeletal muscle-derived satellite cells. 2017

Hui Li Tong, and Run Ying Jiang, and Wei Wei Zhang, and Yun Qin Yan
The Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.

Our group previously identified miR-2425-5p, a unique bovine miRNA; however, its biological function and regulation in muscle-derived satellite cells (MDSCs) remain unclear. Herein, stem-loop RT-PCR results showed that miR-2425-5p increased during MDSCs proliferation, but decreased during differentiation. Cell proliferation was examined using EdU assays, cyclin B1 (CCNB1) and proliferating cell nuclear antigen (PCNA) western blot (WB) and flow cytometry analysis. These results showed that miR-2425-5p mimics (miR-2425-M) enhanced MDSCs proliferation, whereas, miR-2425-5p inhibitor (miR-2425-I) had opposite effect. Conversely, cell differentiation studies by desmin (DES) immunofluorescence, myotubes formation, and myosin heavy chain 3 (MYH3) WB analyses revealed that miR-2425-M and miR-2425-I blocked and promoted MDSCs differentiation, respectively. Moreover, luciferase reporter, RT-PCR, and WB assays showed that miR-2425-5p directly targeted the 3'-UTR of RAD9 homolog A (RAD9A) and myogenin (MYOG) to regulate their expression. Rescue experiment showed RAD9A inhibited the proliferation of MDSCs through miR-2425-5p. In addition, we found that miR-2425-5p expression was regulated by its host gene NCK associated protein 5-like (NCKAP5L) rather than being transcribed independently as a separate small RNA. Collectively, these data indicate that miR-2425-5p is a novel regulator of bovine MDSCs proliferation and differentiation and provides further insight into the biological functions of miRNA in this species.

UI MeSH Term Description Entries
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D049109 Cell Proliferation All of the processes involved in increasing CELL NUMBER including CELL DIVISION. Cell Growth in Number,Cellular Proliferation,Cell Multiplication,Cell Number Growth,Growth, Cell Number,Multiplication, Cell,Number Growth, Cell,Proliferation, Cell,Proliferation, Cellular
D018008 Myogenin A myogenic regulatory factor that controls myogenesis. Myogenin is induced during differentiation of every skeletal muscle cell line that has been investigated, in contrast to the other myogenic regulatory factors that only appear in certain cell types.
D018797 Cell Cycle Proteins Proteins that control the CELL DIVISION CYCLE. This family of proteins includes a wide variety of classes, including CYCLIN-DEPENDENT KINASES, mitogen-activated kinases, CYCLINS, and PHOSPHOPROTEIN PHOSPHATASES as well as their putative substrates such as chromatin-associated proteins, CYTOSKELETAL PROTEINS, and TRANSCRIPTION FACTORS. Cell Division Cycle Proteins,Cell-Cycle Regulatory Proteins,cdc Proteins,Cell Cycle Regulatory Proteins
D024510 Muscle Development Developmental events leading to the formation of adult muscular system, which includes differentiation of the various types of muscle cell precursors, migration of myoblasts, activation of myogenesis and development of muscle anchorage. Myofibrillogenesis,Myogenesis,Muscular Development,Development, Muscle,Development, Muscular
D032496 Satellite Cells, Skeletal Muscle Elongated, spindle-shaped, quiescent myoblasts lying in close contact with adult skeletal muscle. They are thought to play a role in muscle repair and regeneration. Muscle Satellite Cells,Myosatellite Cells,Skeletal Muscle Satellite Cell,Skeletal Muscle Satellite Cells,Satellite Cells, Myogenic,Cell, Muscle Satellite,Cell, Myogenic Satellite,Cell, Myosatellite,Muscle Satellite Cell,Myogenic Satellite Cell,Myogenic Satellite Cells,Myosatellite Cell,Satellite Cell, Muscle,Satellite Cell, Myogenic
D035683 MicroRNAs Small double-stranded, non-protein coding RNAs, 21-25 nucleotides in length generated from single-stranded microRNA gene transcripts by the same RIBONUCLEASE III, Dicer, that produces small interfering RNAs (RNA, SMALL INTERFERING). They become part of the RNA-INDUCED SILENCING COMPLEX and repress the translation (TRANSLATION, GENETIC) of target RNA by binding to homologous 3'UTR region as an imperfect match. The small temporal RNAs (stRNAs), let-7 and lin-4, from C. elegans, are the first 2 miRNAs discovered, and are from a class of miRNAs involved in developmental timing. RNA, Small Temporal,Small Temporal RNA,miRNA,stRNA,Micro RNA,MicroRNA,Primary MicroRNA,Primary miRNA,miRNAs,pre-miRNA,pri-miRNA,MicroRNA, Primary,RNA, Micro,Temporal RNA, Small,miRNA, Primary,pre miRNA,pri miRNA

Related Publications

Hui Li Tong, and Run Ying Jiang, and Wei Wei Zhang, and Yun Qin Yan
January 2021, Molecular and cellular biochemistry,
Hui Li Tong, and Run Ying Jiang, and Wei Wei Zhang, and Yun Qin Yan
August 2020, International journal of molecular sciences,
Hui Li Tong, and Run Ying Jiang, and Wei Wei Zhang, and Yun Qin Yan
February 2018, In vitro cellular & developmental biology. Animal,
Hui Li Tong, and Run Ying Jiang, and Wei Wei Zhang, and Yun Qin Yan
May 2022, Genes,
Hui Li Tong, and Run Ying Jiang, and Wei Wei Zhang, and Yun Qin Yan
March 2017, In vitro cellular & developmental biology. Animal,
Hui Li Tong, and Run Ying Jiang, and Wei Wei Zhang, and Yun Qin Yan
January 2018, Journal of cellular physiology,
Hui Li Tong, and Run Ying Jiang, and Wei Wei Zhang, and Yun Qin Yan
May 2021, Genes,
Hui Li Tong, and Run Ying Jiang, and Wei Wei Zhang, and Yun Qin Yan
March 2020, Genes,
Hui Li Tong, and Run Ying Jiang, and Wei Wei Zhang, and Yun Qin Yan
December 2023, Animal biotechnology,
Hui Li Tong, and Run Ying Jiang, and Wei Wei Zhang, and Yun Qin Yan
January 2018, Journal of cellular physiology,
Copied contents to your clipboard!