Influence of hyperinsulinemia, hyperglycemia, and the route of glucose administration on splanchnic glucose exchange. 1978

R A DeFronzo, and E Ferrannini, and R Hendler, and J Wahren, and P Felig

The effects of hyperinsulinemia, hyperglycemia, and the route of glucose administration on total glucose utilization and on net splanchnic glucose exchange were studied in 20 normal volunteers with the hepatic venous catheter technique. Euglycemic hyperinsulinemia [induced by a priming plus continuous infusion of insulin resulting in plasma insulin levels of 400-1200 muunits (international)/ml and a variable glucose infusion] caused a 5- to 6-fold increase above basal in total glucose turnover. However, net splanchnic glucose uptake (0.5 +/- 0.2 mg/kg per min) accounted for only 4-5% of total glucose utilization. When hyperglycemia (223 +/- 1 mg/dl) was induced in addition to hyperinsulinemia by the intravenous infusion of glucose, splanchnic glucose uptake increased 100% to 1.0-1.1 mg/kg per min but was still responsible for only 10-14% of total glucose utilization. In other studies hyperglycemia (223 +/- 2 mg/dl) was maintained constant by a variable intravenous infusion of glucose for 4 hr and oral glucose (1.2 gm/kg) was administered at 1 hr. After the oral glucose, net splanchnic glucose uptake increased to values 6-fold higher than with intravenous glucose despite unchanged plasma glucose levels and plasma insulin concentrations well below those observed in the studies with euglycemic hyperinsulinemia. The results indicate that hyperinsulinemia or hyperglycemia induced by intravenous infusion of glucose or insulin causes minimal net uptake of glucose by the splanchnic bed despite marked stimulation of total glucose turnover. In contrast, administration of glucose by the oral route has a marked stimulatory effect on net splanchnic glucose uptake. These findings suggest that orally consumed glucose causes the release of a gastrointestinal factor that enhances insulin-mediated glucose uptake by the liver.

UI MeSH Term Description Entries
D007263 Infusions, Parenteral The administration of liquid medication, nutrient, or other fluid through some other route than the alimentary canal, usually over minutes or hours, either by gravity flow or often by infusion pumping. Intra-Abdominal Infusions,Intraperitoneal Infusions,Parenteral Infusions,Peritoneal Infusions,Infusion, Intra-Abdominal,Infusion, Intraperitoneal,Infusion, Parenteral,Infusion, Peritoneal,Infusions, Intra-Abdominal,Infusions, Intraperitoneal,Infusions, Peritoneal,Intra Abdominal Infusions,Intra-Abdominal Infusion,Intraperitoneal Infusion,Parenteral Infusion,Peritoneal Infusion
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006943 Hyperglycemia Abnormally high BLOOD GLUCOSE level. Postprandial Hyperglycemia,Hyperglycemia, Postprandial,Hyperglycemias,Hyperglycemias, Postprandial,Postprandial Hyperglycemias
D000284 Administration, Oral The giving of drugs, chemicals, or other substances by mouth. Drug Administration, Oral,Administration, Oral Drug,Oral Administration,Oral Drug Administration,Administrations, Oral,Administrations, Oral Drug,Drug Administrations, Oral,Oral Administrations,Oral Drug Administrations

Related Publications

R A DeFronzo, and E Ferrannini, and R Hendler, and J Wahren, and P Felig
September 1982, Metabolism: clinical and experimental,
R A DeFronzo, and E Ferrannini, and R Hendler, and J Wahren, and P Felig
April 1981, The Journal of clinical investigation,
R A DeFronzo, and E Ferrannini, and R Hendler, and J Wahren, and P Felig
November 1989, The American journal of physiology,
R A DeFronzo, and E Ferrannini, and R Hendler, and J Wahren, and P Felig
December 2015, General and comparative endocrinology,
R A DeFronzo, and E Ferrannini, and R Hendler, and J Wahren, and P Felig
January 1986, The Journal of clinical endocrinology and metabolism,
R A DeFronzo, and E Ferrannini, and R Hendler, and J Wahren, and P Felig
September 1986, The Journal of clinical endocrinology and metabolism,
R A DeFronzo, and E Ferrannini, and R Hendler, and J Wahren, and P Felig
February 1990, Diabetes,
R A DeFronzo, and E Ferrannini, and R Hendler, and J Wahren, and P Felig
December 1987, The American journal of physiology,
R A DeFronzo, and E Ferrannini, and R Hendler, and J Wahren, and P Felig
October 1991, Metabolism: clinical and experimental,
Copied contents to your clipboard!