Effects of diastereoisomers of 1,25-dihydroxyvitamin D3-26,23-lactone on alkaline phosphatase and collagen synthesis in osteoblastic cells. 1988

S Ishizuka, and M Kiyoki, and N Kurihara, and Y Hakeda, and K Ikeda, and M Kumegawa, and A W Norman
Department of Biochemistry, Teijin Institute for Bio-Medical Research, Tokyo, Japan.

The effects of the four diastereoisomers of 1,25-dihydroxyvitamin D3-26,23-lactone (1,25-(OH)2D3-26,23-lactone) on alkaline phosphatase (AP) activity and collagen and noncollagen protein synthesis were examined in cultures of the osteoblastic clone MC3T3-E1 cell line. The four lactone diastereoisomers had little effect on the protein and DNA content of the cells. The 23(S),25(S)- and 23(R),25(R)-1,25-(OH)2D3-26,23-lactones increased AP activity in a linear dose-dependent fashion. Maximal effects were observed at 100 and 1000 pg/ml, respectively. In contrast, the naturally occurring 23(S),25(R)-, 1,25-(OH)2D3-26,23-lactone and the 23(R),25(S)-1,25-(OH)2D3-26,23-lactone showed biphasic stimulatory effects on AP activity. At both 80 and 10,000 pg/ml, they stimulated maximum increases in alkaline phosphatase activity. At 80 pg/ml the 23(S),25(R)- and 23(R),25(S)-isomers stimulated an increase in collagen synthesis, while at 10,000 pg/ml these isomers and 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) did not. Moreover, these two isomers (at 10,000 pg/ml) plus insulin or dexamethasone had an additive effect on AP activity, but not at 80 pg/ml. At 80 pg/ml but not at 10,000 pg/ml, the 23(S),25(R)-isomer had an additive effect on AP activity with the simultaneous addition of 25-hydroxyvitamin D3. Relative to 1,25-(OH)2D3, the binding affinities of 23(S),25(S)-, 23(R),25(R)-, 23(S),25(R)- and 23(R),25(S)-1,25-(OH)2D3-26,23-lactones were calculated to be 1/13.0, 1/131.8, 1/805.2, and 1/1083.3, respectively. No metabolites could be detected in the medium when [1-3H]23(S),25(R)-1,25-(OH)2D3-26,23-lactone (the naturally occurring diastereoisomer) was added to the cultures. However, the stimulative effects of 1,25-(OH)2D3 and the 23(S),25(R)-isomer at both concentrations were completely abolished by L-1-tosyl-amido-2-phenylethyl chloromethyl ketone. These results indicate that 1,25-(OH)2D3-lactone has a stimulative effect on osteoblastic cell functions in vitro. The naturally occurring 23(S),25(R)-1,25-(OH)2D3-lactone acts biphasically and may act on bone metabolism in vivo, possibly through a 1,25-(OH)2D3-receptor-mediated pathway.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010006 Osteoblasts Bone-forming cells which secrete an EXTRACELLULAR MATRIX. HYDROXYAPATITE crystals are then deposited into the matrix to form bone. Osteoblast
D011987 Receptors, Steroid Proteins found usually in the cytoplasm or nucleus that specifically bind steroid hormones and trigger changes influencing the behavior of cells. The steroid receptor-steroid hormone complex regulates the transcription of specific genes. Corticosteroid Receptors,Receptors, Corticosteroid,Steroid Receptors,Corticosteroid Receptor,Receptors, Steroids,Steroid Receptor,Receptor, Corticosteroid,Receptor, Steroid,Steroids Receptors
D002117 Calcitriol The physiologically active form of vitamin D. It is formed primarily in the kidney by enzymatic hydroxylation of 25-hydroxycholecalciferol (CALCIFEDIOL). Its production is stimulated by low blood calcium levels and parathyroid hormone. Calcitriol increases intestinal absorption of calcium and phosphorus, and in concert with parathyroid hormone increases bone resorption. 1 alpha,25-Dihydroxycholecalciferol,1 alpha,25-Dihydroxyvitamin D3,1, 25-(OH)2D3,1,25(OH)2D3,1,25-Dihydroxycholecalciferol,1,25-Dihydroxyvitamin D3,1 alpha, 25-dihydroxy-20-epi-Vitamin D3,1,25(OH)2-20epi-D3,1,25-dihydroxy-20-epi-Vitamin D3,20-epi-1alpha,25-dihydroxycholecaliferol,Bocatriol,Calcijex,Calcitriol KyraMed,Calcitriol-Nefro,Decostriol,MC-1288,MC1288,Osteotriol,Renatriol,Rocaltrol,Silkis,Sitriol,Soltriol,Tirocal,1 alpha,25 Dihydroxyvitamin D3,1,25 Dihydroxycholecalciferol,1,25 Dihydroxyvitamin D3,1,25 dihydroxy 20 epi Vitamin D3,Calcitriol Nefro,D3, 1 alpha,25-Dihydroxyvitamin,D3, 1,25-Dihydroxyvitamin,D3, 1,25-dihydroxy-20-epi-Vitamin,KyraMed, Calcitriol,MC 1288
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003094 Collagen A polypeptide substance comprising about one third of the total protein in mammalian organisms. It is the main constituent of SKIN; CONNECTIVE TISSUE; and the organic substance of bones (BONE AND BONES) and teeth (TOOTH). Avicon,Avitene,Collagen Felt,Collagen Fleece,Collagenfleece,Collastat,Dermodress,Microfibril Collagen Hemostat,Pangen,Zyderm,alpha-Collagen,Collagen Hemostat, Microfibril,alpha Collagen
D003600 Cytosol Intracellular fluid from the cytoplasm after removal of ORGANELLES and other insoluble cytoplasmic components. Cytosols
D000469 Alkaline Phosphatase An enzyme that catalyzes the conversion of an orthophosphoric monoester and water to an alcohol and orthophosphate. EC 3.1.3.1.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013237 Stereoisomerism The phenomenon whereby compounds whose molecules have the same number and kind of atoms and the same atomic arrangement, but differ in their spatial relationships. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed) Molecular Stereochemistry,Stereoisomers,Stereochemistry, Molecular,Stereoisomer

Related Publications

S Ishizuka, and M Kiyoki, and N Kurihara, and Y Hakeda, and K Ikeda, and M Kumegawa, and A W Norman
March 1984, Biochemical and biophysical research communications,
S Ishizuka, and M Kiyoki, and N Kurihara, and Y Hakeda, and K Ikeda, and M Kumegawa, and A W Norman
September 1995, Clinical chemistry,
S Ishizuka, and M Kiyoki, and N Kurihara, and Y Hakeda, and K Ikeda, and M Kumegawa, and A W Norman
October 1986, Endocrinology,
S Ishizuka, and M Kiyoki, and N Kurihara, and Y Hakeda, and K Ikeda, and M Kumegawa, and A W Norman
April 1986, Endocrinology,
S Ishizuka, and M Kiyoki, and N Kurihara, and Y Hakeda, and K Ikeda, and M Kumegawa, and A W Norman
November 1981, FEBS letters,
S Ishizuka, and M Kiyoki, and N Kurihara, and Y Hakeda, and K Ikeda, and M Kumegawa, and A W Norman
May 1984, Archives of biochemistry and biophysics,
S Ishizuka, and M Kiyoki, and N Kurihara, and Y Hakeda, and K Ikeda, and M Kumegawa, and A W Norman
February 1990, Endocrinology,
S Ishizuka, and M Kiyoki, and N Kurihara, and Y Hakeda, and K Ikeda, and M Kumegawa, and A W Norman
January 1990, Reproduction, nutrition, development,
S Ishizuka, and M Kiyoki, and N Kurihara, and Y Hakeda, and K Ikeda, and M Kumegawa, and A W Norman
November 1989, The Journal of biological chemistry,
S Ishizuka, and M Kiyoki, and N Kurihara, and Y Hakeda, and K Ikeda, and M Kumegawa, and A W Norman
July 1981, The Journal of biological chemistry,
Copied contents to your clipboard!