Analysis of lipopolysaccharide biosynthesis in Salmonella typhimurium and Escherichia coli by using agents which specifically block incorporation of 3-deoxy-D-manno-octulosonate. 1988

R C Goldman, and C C Doran, and J O Capobianco
Anti-Infective Research Division, Pharmaceutical Discovery, Abbott Laboratories, Illinois 60064.

Antibacterial agents which specifically inhibit CTP:CMP-3-deoxy-D-manno-octulosonate cytidylyltransferase activity were used to block the incorporation of 3-deoxy-D-manno-octulosonate (KDO) into lipopolysaccharide. Lipopolysaccharide synthesis ceased, molecules similar in structure to lipid A accumulated, and bacterial growth ceased following addition of such agents to cultures of Salmonella typhimurium and Escherichia coli. Although four major species of lipid A accumulated in S. typhimurium, their kinetics of accumulation were different. The least polar of the major species was IVA [O-(2-amino-2-deoxy-beta-D-glucopyranosyl)-(1----6)-2-amino-2-deoxy-a lph a- D-glucose, acylated at positions 2, 3, 2', and 3' with beta-hydroxymyristoyl groups and bearing phosphates at positions 1 and 4'], a molecule previously isolated from bacteria containing a kdsA mutation (C. R. H. Raetz, S. Purcell, M. V. Meyer, N. Qureshi, and K. Takayama, J. Biol. Chem. 260:16080-16088, 1985). Species IVA accumulated first and to the greatest extent following addition of the inhibitor, with other more polar derivatives appearing only after IVA attained half its maximal level. In contrast, only two major species of precursor accumulated in E. coli following addition of the inhibitor. One of these species was identical to IVA from S. typhimurium on the basis of chemical composition, fast atom bombardment mass spectroscopy, and comigration on Silica Gel H, and it also accumulated prior to a more polar species of related structure. We conclude that the addition of KDO to precursor species IVA is the major pathway of lipid A-KDO formation in both S. typhimurium LT2 and E. coli and that accumulation of the more polar species lacking KDO only occurs in response to accumulation of species IVA following inhibition of the normal pathway.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008050 Lipid A Lipid A is the biologically active component of lipopolysaccharides. It shows strong endotoxic activity and exhibits immunogenic properties.
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D009713 Nucleotidyltransferases A class of enzymes that transfers nucleotidyl residues. EC 2.7.7. Nucleotidyltransferase
D011355 Prodrugs A compound that, on administration, must undergo chemical conversion by metabolic processes before becoming the pharmacologically active drug for which it is a prodrug. Drug Precursor,Drug Precursors,Pro-Drug,Prodrug,Pro-Drugs,Precursor, Drug,Precursors, Drug,Pro Drug,Pro Drugs
D002621 Chemistry A basic science concerned with the composition, structure, and properties of matter; and the reactions that occur between substances and the associated energy exchange.
D002848 Chromatography, DEAE-Cellulose A type of ion exchange chromatography using diethylaminoethyl cellulose (DEAE-CELLULOSE) as a positively charged resin. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) DEAE-Cellulose Chromatography,Chromatography, DEAE Cellulose,DEAE Cellulose Chromatography
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000900 Anti-Bacterial Agents Substances that inhibit the growth or reproduction of BACTERIA. Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial
D012486 Salmonella typhimurium A serotype of Salmonella enterica that is a frequent agent of Salmonella gastroenteritis in humans. It also causes PARATYPHOID FEVER. Salmonella typhimurium LT2

Related Publications

R C Goldman, and C C Doran, and J O Capobianco
January 1992, Methods in enzymology,
R C Goldman, and C C Doran, and J O Capobianco
May 2003, The Journal of biological chemistry,
R C Goldman, and C C Doran, and J O Capobianco
November 1994, Journal of bacteriology,
R C Goldman, and C C Doran, and J O Capobianco
February 1980, Journal of bacteriology,
R C Goldman, and C C Doran, and J O Capobianco
September 1992, European journal of biochemistry,
R C Goldman, and C C Doran, and J O Capobianco
December 1986, The Journal of biological chemistry,
Copied contents to your clipboard!