A 10-kDa cyanogen bromide fragment from the epidermal growth factor homology domain of rabbit thrombomodulin contains the primary thrombin binding site. 1988

S Kurosawa, and D J Stearns, and K W Jackson, and C T Esmon
Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City 73104.

We have isolated a fragment (approximately equal to 10 kDa) of thrombomodulin containing the fifth and sixth epidermal growth factor (EGF)-like regions which retains thrombin binding capacity. The amino-terminal sequence of a 50-kDa active fragment of thrombomodulin derived from elastase proteolysis begins 11 residues before the first EGF-like structure of native thrombomodulin. Subsequent digestion with cyanogen bromide yields a 10-kDa thrombin binding fragment. The amino-terminal sequence of this fragment starts at the fifth EGF-like structure (Phe407). The amino acid composition suggests that this fragment contains the fifth and sixth EGF-like structures with a total of approximately 77 residues. This fragment lacks cofactor activity, but acts as a competitive inhibitor for protein C activation (Ki = 8.6 +/- 1.4 nM). We propose that the fifth and sixth EGF-like structures contain the thrombin binding site of thrombomodulin.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D003488 Cyanogen Bromide Cyanogen bromide (CNBr). A compound used in molecular biology to digest some proteins and as a coupling reagent for phosphoroamidate or pyrophosphate internucleotide bonds in DNA duplexes. Bromide, Cyanogen
D004815 Epidermal Growth Factor A 6-kDa polypeptide growth factor initially discovered in mouse submaxillary glands. Human epidermal growth factor was originally isolated from urine based on its ability to inhibit gastric secretion and called urogastrone. Epidermal growth factor exerts a wide variety of biological effects including the promotion of proliferation and differentiation of mesenchymal and EPITHELIAL CELLS. It is synthesized as a transmembrane protein which can be cleaved to release a soluble active form. EGF,Epidermal Growth Factor-Urogastrone,Urogastrone,Human Urinary Gastric Inhibitor,beta-Urogastrone,Growth Factor, Epidermal,Growth Factor-Urogastrone, Epidermal,beta Urogastrone
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino

Related Publications

S Kurosawa, and D J Stearns, and K W Jackson, and C T Esmon
September 1990, The Journal of biological chemistry,
S Kurosawa, and D J Stearns, and K W Jackson, and C T Esmon
June 1998, Biochemistry,
S Kurosawa, and D J Stearns, and K W Jackson, and C T Esmon
June 2006, Journal of thrombosis and haemostasis : JTH,
S Kurosawa, and D J Stearns, and K W Jackson, and C T Esmon
January 1998, Biochemistry,
S Kurosawa, and D J Stearns, and K W Jackson, and C T Esmon
August 2000, The Journal of biological chemistry,
S Kurosawa, and D J Stearns, and K W Jackson, and C T Esmon
February 2001, Biochemistry,
S Kurosawa, and D J Stearns, and K W Jackson, and C T Esmon
August 2000, Biochemistry,
S Kurosawa, and D J Stearns, and K W Jackson, and C T Esmon
October 1995, The Journal of biological chemistry,
S Kurosawa, and D J Stearns, and K W Jackson, and C T Esmon
January 1983, International journal of peptide and protein research,
Copied contents to your clipboard!