Autoradiographic distribution of vasoactive intestinal polypeptide receptors in rabbit and rat small intestine. 1988

H Sayadi, and J W Harmon, and T W Moody, and L Y Korman
Department of Medicine, Veterans Administration Medical Center, Washington, DC 20422.

Vasoactive intestinal peptide (VIP) is found in the enteric nervous system of all layers of the small intestine. In the gastrointestinal tract, VIP receptors coupled to adenylate cyclase are present on epithelial, smooth muscle and possibly mononuclear cells. This study analyzes the distribution of VIP binding using in vitro autoradiographic techniques. VIP binding was present in high density in the mucosal layer of rabbit duodenum, jejunum and ileum. Low VIP binding was noted over the smooth muscle layers or the lymphoid follicles. Similar results were obtained in rat small intestine. The density of VIP binding was greatest in duodenal mucosa but was present in lower density in jejunal and ileal mucosa. Again, low VIP binding was noted in the smooth muscle layers or lymphoid follicles. Thus, autoradiographic maps of small intestine indicate that VIP receptors are found primarily in the small intestinal mucosa.

UI MeSH Term Description Entries
D007082 Ileum The distal and narrowest portion of the SMALL INTESTINE, between the JEJUNUM and the ILEOCECAL VALVE of the LARGE INTESTINE.
D007421 Intestine, Small The portion of the GASTROINTESTINAL TRACT between the PYLORUS of the STOMACH and the ILEOCECAL VALVE of the LARGE INTESTINE. It is divisible into three portions: the DUODENUM, the JEJUNUM, and the ILEUM. Small Intestine,Intestines, Small,Small Intestines
D007583 Jejunum The middle portion of the SMALL INTESTINE, between DUODENUM and ILEUM. It represents about 2/5 of the remaining portion of the small intestine below duodenum. Jejunums
D008297 Male Males
D009092 Mucous Membrane An EPITHELIUM with MUCUS-secreting cells, such as GOBLET CELLS. It forms the lining of many body cavities, such as the DIGESTIVE TRACT, the RESPIRATORY TRACT, and the reproductive tract. Mucosa, rich in blood and lymph vessels, comprises an inner epithelium, a middle layer (lamina propria) of loose CONNECTIVE TISSUE, and an outer layer (muscularis mucosae) of SMOOTH MUSCLE CELLS that separates the mucosa from submucosa. Lamina Propria,Mucosa,Mucosal Tissue,Muscularis Mucosae,Mucous Membranes,Membrane, Mucous,Membranes, Mucous,Mucosae, Muscularis,Mucosal Tissues,Propria, Lamina,Tissue, Mucosal,Tissues, Mucosal
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D011964 Receptors, Gastrointestinal Hormone Cell surface proteins that bind gastrointestinal hormones with high affinity and trigger intracellular changes influencing the behavior of cells. Most gastrointestinal hormones also act as neurotransmitters so these receptors are also present in the central and peripheral nervous systems. Gastrointestinal Hormone Receptors,Intestinal Hormone Receptors,Receptors, Gastrointestinal Peptides,Gastrointestinal Hormone Receptor,Intestinal Hormone Receptor,Receptors, Gastrointestinal Hormones,Receptors, Intestinal Hormone,Gastrointestinal Hormones Receptors,Gastrointestinal Peptides Receptors,Hormone Receptor, Gastrointestinal,Hormone Receptor, Intestinal,Hormone Receptors, Gastrointestinal,Hormone Receptors, Intestinal,Hormones Receptors, Gastrointestinal,Peptides Receptors, Gastrointestinal,Receptor, Gastrointestinal Hormone,Receptor, Intestinal Hormone
D004386 Duodenum The shortest and widest portion of the SMALL INTESTINE adjacent to the PYLORUS of the STOMACH. It is named for having the length equal to about the width of 12 fingers. Duodenums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

H Sayadi, and J W Harmon, and T W Moody, and L Y Korman
October 1991, Journal of autonomic pharmacology,
H Sayadi, and J W Harmon, and T W Moody, and L Y Korman
August 1989, Regulatory peptides,
H Sayadi, and J W Harmon, and T W Moody, and L Y Korman
January 1985, Peptides,
H Sayadi, and J W Harmon, and T W Moody, and L Y Korman
January 1991, Journal of chemical neuroanatomy,
H Sayadi, and J W Harmon, and T W Moody, and L Y Korman
January 1981, Gut,
H Sayadi, and J W Harmon, and T W Moody, and L Y Korman
April 2007, Sheng li xue bao : [Acta physiologica Sinica],
H Sayadi, and J W Harmon, and T W Moody, and L Y Korman
August 2003, Autonomic neuroscience : basic & clinical,
H Sayadi, and J W Harmon, and T W Moody, and L Y Korman
April 2005, British journal of pharmacology,
H Sayadi, and J W Harmon, and T W Moody, and L Y Korman
January 1985, European journal of pharmacology,
H Sayadi, and J W Harmon, and T W Moody, and L Y Korman
January 1983, The American journal of physiology,
Copied contents to your clipboard!