Localization of replication origins in pea chloroplast DNA. 1988

R Meeker, and B Nielsen, and K K Tewari
Department of Molecular Biology and Biochemistry, University of California, Irvine 92717.

The locations of the two replication origins in pea chloroplast DNA (ctDNA) have been mapped by electron microscopic analysis of restriction digests of supercoiled ctDNA cross-linked with trioxalen. Both origins of replication, identified as displacement loops (D-loops), were present in the 44-kilobase-pair (kbp) SalI A fragment. The first D-loop was located at 9.0 kbp from the closest SalI restriction site. The average size of this D-loop was about 0.7 kbp. The second D-loop started 14.2 kbp in from the same restriction site and ended at about 15.5 kbp, giving it a size of about 1.3 kbp. The orientation of these two D-loops on the restriction map of pea ctDNA was determined by analyzing SmaI, PstI, and SalI-SmaI restriction digests of pea ctDNA. One D-loop has been mapped in the spacer region between the 16S and 23S rRNA genes. The second D-loop was located downstream of the 23S rRNA gene. Denaturation mapping of recombinants pCP 12-7 and pCB 1-12, which contain both D-loops, confirmed the location of the D-loops in the restriction map of pea ctDNA. Denaturation-mapping studies also showed that the two D-loops had different base compositions; the one closest to a SalI restriction site denatured readily compared with the other D-loop. The recombinants pCP 12-7 and pCB 1-12 were found to be highly active in DNA synthesis when used as templates in a partially purified replication system from pea chloroplasts. Analysis of in vitro-synthesized DNA with either of these recombinants showed that full-length template DNA was synthesized. Recombinants from other regions of the pea chloroplast genome showed no significant DNA synthesis activity in vitro.

UI MeSH Term Description Entries
D007887 Fabaceae The large family of plants characterized by pods. Some are edible and some cause LATHYRISM or FAVISM and other forms of poisoning. Other species yield useful materials like gums from ACACIA and various LECTINS like PHYTOHEMAGGLUTININS from PHASEOLUS. Many of them harbor NITROGEN FIXATION bacteria on their roots. Many but not all species of "beans" belong to this family. Afzelia,Amorpha,Andira,Baptisia,Callerya,Ceratonia,Clathrotropis,Colophospermum,Copaifera,Delonix,Euchresta,Guibourtia,Legumes,Machaerium,Pithecolobium,Stryphnodendron,Leguminosae,Pea Family,Pithecellobium,Tachigalia,Families, Pea,Family, Pea,Legume,Pea Families
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D010946 Plants, Medicinal Plants whose roots, leaves, seeds, bark, or other constituent parts possess therapeutic, tonic, purgative, curative or other pharmacologic attributes, when administered to man or animals. Herbs, Medicinal,Medicinal Herbs,Healing Plants,Medicinal Plants,Pharmaceutical Plants,Healing Plant,Herb, Medicinal,Medicinal Herb,Medicinal Plant,Pharmaceutical Plant,Plant, Healing,Plant, Medicinal,Plant, Pharmaceutical,Plants, Healing,Plants, Pharmaceutical
D002736 Chloroplasts Plant cell inclusion bodies that contain the photosynthetic pigment CHLOROPHYLL, which is associated with the membrane of THYLAKOIDS. Chloroplasts occur in cells of leaves and young stems of plants. They are also found in some forms of PHYTOPLANKTON such as HAPTOPHYTA; DINOFLAGELLATES; DIATOMS; and CRYPTOPHYTA. Chloroplast,Etioplasts,Etioplast
D004259 DNA-Directed DNA Polymerase DNA-dependent DNA polymerases found in bacteria, animal and plant cells. During the replication process, these enzymes catalyze the addition of deoxyribonucleotide residues to the end of a DNA strand in the presence of DNA as template-primer. They also possess exonuclease activity and therefore function in DNA repair. DNA Polymerase,DNA Polymerases,DNA-Dependent DNA Polymerases,DNA Polymerase N3,DNA Dependent DNA Polymerases,DNA Directed DNA Polymerase,DNA Polymerase, DNA-Directed,DNA Polymerases, DNA-Dependent,Polymerase N3, DNA,Polymerase, DNA,Polymerase, DNA-Directed DNA,Polymerases, DNA,Polymerases, DNA-Dependent DNA
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004278 DNA, Superhelical Circular duplex DNA isolated from viruses, bacteria and mitochondria in supercoiled or supertwisted form. This superhelical DNA is endowed with free energy. During transcription, the magnitude of RNA initiation is proportional to the DNA superhelicity. DNA, Supercoiled,DNA, Supertwisted,Supercoiled DNA,Superhelical DNA,Supertwisted DNA
D015252 Deoxyribonucleases, Type II Site-Specific Enzyme systems containing a single subunit and requiring only magnesium for endonucleolytic activity. The corresponding modification methylases are separate enzymes. The systems recognize specific short DNA sequences and cleave either within, or at a short specific distance from, the recognition sequence to give specific double-stranded fragments with terminal 5'-phosphates. Enzymes from different microorganisms with the same specificity are called isoschizomers. EC 3.1.21.4. DNA Restriction Enzymes, Type II,DNase, Site-Specific, Type II,Restriction Endonucleases, Type II,Type II Restriction Enzymes,DNase, Site Specific, Type II,Deoxyribonucleases, Type II, Site Specific,Deoxyribonucleases, Type II, Site-Specific,Site-Specific DNase, Type II,Type II Site Specific DNase,Type II Site Specific Deoxyribonucleases,Type II Site-Specific DNase,Type II Site-Specific Deoxyribonucleases,Deoxyribonucleases, Type II Site Specific,Site Specific DNase, Type II

Related Publications

R Meeker, and B Nielsen, and K K Tewari
March 1992, Molecular & general genetics : MGG,
R Meeker, and B Nielsen, and K K Tewari
June 1991, Plant molecular biology,
R Meeker, and B Nielsen, and K K Tewari
May 1984, Nucleic acids research,
R Meeker, and B Nielsen, and K K Tewari
January 1983, Cold Spring Harbor symposia on quantitative biology,
R Meeker, and B Nielsen, and K K Tewari
March 1985, TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik,
R Meeker, and B Nielsen, and K K Tewari
November 1996, Plant molecular biology,
R Meeker, and B Nielsen, and K K Tewari
October 2013, Cold Spring Harbor perspectives in biology,
R Meeker, and B Nielsen, and K K Tewari
November 1998, Plant physiology,
R Meeker, and B Nielsen, and K K Tewari
September 2019, PLoS genetics,
R Meeker, and B Nielsen, and K K Tewari
November 1981, Plasmid,
Copied contents to your clipboard!