Adrenergic receptors in bovine retinal microvessels: presence of alpha 2- and beta- but not alpha 1-receptors. 1988

H Kobayashi, and T Iwasaki, and F Izumi, and S Kurimoto
Department of Pharmacology and Ophthalmology, University of Occupational and Environmental Health, Japan, School of Medicine, Kitakyushu.

In bovine retinal microvessels, alpha 1, alpha 2- and beta-adrenergic receptors were characterized by binding assay, using [3H]prazosin, [3H]para-aminoclonidine and [125I]iodocyanopindolol as radioligands, respectively. The microvessels were purified from bovine eyes by differential centrifugation through a high concentration of bovine serum albumin followed by use of a glass bead filtration technique. In the preparation, specific binding sites for [3H]para-aminoclonidine and [125I]iodocyanopindolol were observed, whereas [3H]prazosin binding was not detected. The [3H]para-aminoclonidine binding sites localized to the microvessels were characterized by high affinity and saturability (KD: 173 +/- 9 pM; Bmax: 394 +/- 11 fmol/mg protein) as well as the [125I]iodocyanopindolol binding sites (KD: 20 +/- 3 pM; Bmax: 43 +/- 4 fmol/mg protein). Furthermore, the specificity of both binding sites was pharmacologically evaluated by measuring the inhibitory effects of various adrenergic reagents on binding. The existence of alpha 2- and beta-adrenergic receptors which were characterized by high affinity, saturability and stereospecificity, leads to the hypothesis that the retinal microcirculation is under neuronal control.

UI MeSH Term Description Entries
D008833 Microcirculation The circulation of the BLOOD through the MICROVASCULAR NETWORK. Microvascular Blood Flow,Microvascular Circulation,Blood Flow, Microvascular,Circulation, Microvascular,Flow, Microvascular Blood,Microvascular Blood Flows,Microvascular Circulations
D011942 Receptors, Adrenergic, alpha One of the two major pharmacological subdivisions of adrenergic receptors that were originally defined by the relative potencies of various adrenergic compounds. The alpha receptors were initially described as excitatory receptors that post-junctionally stimulate SMOOTH MUSCLE contraction. However, further analysis has revealed a more complex picture involving several alpha receptor subtypes and their involvement in feedback regulation. Adrenergic alpha-Receptor,Adrenergic alpha-Receptors,Receptors, alpha-Adrenergic,alpha-Adrenergic Receptor,alpha-Adrenergic Receptors,Receptor, Adrenergic, alpha,Adrenergic alpha Receptor,Adrenergic alpha Receptors,Receptor, alpha-Adrenergic,Receptors, alpha Adrenergic,alpha Adrenergic Receptor,alpha Adrenergic Receptors,alpha-Receptor, Adrenergic,alpha-Receptors, Adrenergic
D011943 Receptors, Adrenergic, beta One of two major pharmacologically defined classes of adrenergic receptors. The beta adrenergic receptors play an important role in regulating CARDIAC MUSCLE contraction, SMOOTH MUSCLE relaxation, and GLYCOGENOLYSIS. Adrenergic beta-Receptor,Adrenergic beta-Receptors,Receptors, beta-Adrenergic,beta Adrenergic Receptor,beta-Adrenergic Receptor,beta-Adrenergic Receptors,Receptor, Adrenergic, beta,Adrenergic Receptor, beta,Adrenergic beta Receptor,Adrenergic beta Receptors,Receptor, beta Adrenergic,Receptor, beta-Adrenergic,Receptors, beta Adrenergic,beta Adrenergic Receptors,beta-Receptor, Adrenergic,beta-Receptors, Adrenergic
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012171 Retinal Vessels The blood vessels which supply and drain the RETINA. Pecten Oculi,Retinal Vasculature,Retinal Blood Vessels,Retinal Blood Vessel,Retinal Vasculatures,Retinal Vessel,Vasculature, Retinal,Vessel, Retinal,Vessel, Retinal Blood

Related Publications

H Kobayashi, and T Iwasaki, and F Izumi, and S Kurimoto
September 1981, Biochemical pharmacology,
H Kobayashi, and T Iwasaki, and F Izumi, and S Kurimoto
November 1989, Neuroscience letters,
H Kobayashi, and T Iwasaki, and F Izumi, and S Kurimoto
January 1982, Journal of cardiovascular pharmacology,
H Kobayashi, and T Iwasaki, and F Izumi, and S Kurimoto
June 2000, The Journal of membrane biology,
H Kobayashi, and T Iwasaki, and F Izumi, and S Kurimoto
August 1995, Investigative ophthalmology & visual science,
H Kobayashi, and T Iwasaki, and F Izumi, and S Kurimoto
May 1988, Investigative ophthalmology & visual science,
H Kobayashi, and T Iwasaki, and F Izumi, and S Kurimoto
May 2007, The Journal of clinical investigation,
H Kobayashi, and T Iwasaki, and F Izumi, and S Kurimoto
November 1987, Investigative ophthalmology & visual science,
H Kobayashi, and T Iwasaki, and F Izumi, and S Kurimoto
November 1995, Kidney international,
H Kobayashi, and T Iwasaki, and F Izumi, and S Kurimoto
May 2007, Brain, behavior, and immunity,
Copied contents to your clipboard!