Dibutyryl cAMP inhibits expression of transformation-related properties in Kirsten murine sarcoma virus transformed Balb/c-3T3 cells despite continued presence of p21v-Ki-ras. 1988

A A Ridgway, and M W De Vouge, and B B Mukherjee
Department of Biology and Centre for Human Genetics, McGill University, Montréal, Quebec, Canada.

We studied the effects of simultaneous treatment with 0.1 mM N6, O2'-dibutyryl cAMP (dbcAMP) and 1 mM theophylline on several transformation-specific properties and on levels of the Kirsten murine sarcoma virus (Ki-MSV) transforming gene product p21v-Ki-ras, in a Ki-MSV-transformed mouse cell line (Balb/c-3T3, clone A31; KA31). The rate of logarithmic growth, cell motility, and final saturation density were reduced in dbcAMP-treated KA31 cultures. Capabilities for anchorage-independent growth were reduced in treated cells, to levels similar to those observed for the untransformed parental A31 cell line. Treatment with dbcAMP had no observable effect on the binding of 125I-labeled epidermal growth factor and did not alter fluorescence staining patterns for actin microfilaments and fibronectin which, although characteristic of normal cells, were also present in KA31 cells. Changes induced by dbcAMP were readily reversible, except for loss of anchorage-independent growth. However, this property was also reversible, provided removal of dbcAMP occurred 48 h prior to inoculation into soft agar medium. Immunoprecipitation with a monoclonal antibody directed against the protein p21v-Ki-ras (Y13-259) revealed the continued presence of this protein in dbcAMP-treated KA31 cells. We, therefore, conclude that cAMP mediates the inhibition of growth-related transformation-specific properties either by acting at steps subsequent to the expression of p21v-Ki-ras or on a pathway independent of p21ras function.

UI MeSH Term Description Entries
D007708 Kirsten murine sarcoma virus A replication-defective murine sarcoma virus (SARCOMA VIRUSES, MURINE) capable of transforming mouse lymphoid cells and producing erythroid leukemia after superinfection with murine leukemia viruses (LEUKEMIA VIRUS, MURINE). It has also been found to transform cultured human fibroblasts, rat liver epithelial cells, and rat adrenocortical cells. Kirsten Sarcoma Virus,Sarcoma Virus, Kirsten,Virus, Kirsten Sarcoma
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D009053 Sarcoma Viruses, Murine A group of replication-defective viruses, in the genus GAMMARETROVIRUS, which are capable of transforming cells, but which replicate and produce tumors only in the presence of Murine leukemia viruses (LEUKEMIA VIRUS, MURINE). Finkel-Biskis-Jinkins murine sarcoma virus,Mouse Sarcoma Viruses,FBJ-MSV,FBR-MSV,Finkel-Biskis-Reilly murine sarcoma virus,Finkel Biskis Jinkins murine sarcoma virus,Finkel Biskis Reilly murine sarcoma virus,Murine Sarcoma Viruses,Sarcoma Viruses, Mouse
D011518 Proto-Oncogene Proteins Products of proto-oncogenes. Normally they do not have oncogenic or transforming properties, but are involved in the regulation or differentiation of cell growth. They often have protein kinase activity. Cellular Proto-Oncogene Proteins,c-onc Proteins,Proto Oncogene Proteins, Cellular,Proto-Oncogene Products, Cellular,Cellular Proto Oncogene Proteins,Cellular Proto-Oncogene Products,Proto Oncogene Products, Cellular,Proto Oncogene Proteins,Proto-Oncogene Proteins, Cellular,c onc Proteins
D011905 Genes, ras Family of retrovirus-associated DNA sequences (ras) originally isolated from Harvey (H-ras, Ha-ras, rasH) and Kirsten (K-ras, Ki-ras, rasK) murine sarcoma viruses. Ras genes are widely conserved among animal species and sequences corresponding to both H-ras and K-ras genes have been detected in human, avian, murine, and non-vertebrate genomes. The closely related N-ras gene has been detected in human neuroblastoma and sarcoma cell lines. All genes of the family have a similar exon-intron structure and each encodes a p21 protein. Ha-ras Genes,Ki-ras Genes,N-ras Genes,c-Ha-ras Genes,c-Ki-ras Genes,c-N-ras Genes,ras Genes,v-Ha-ras Genes,v-Ki-ras Genes,H-ras Genes,H-ras Oncogenes,Ha-ras Oncogenes,K-ras Genes,K-ras Oncogenes,Ki-ras Oncogenes,N-ras Oncogenes,c-H-ras Genes,c-H-ras Proto-Oncogenes,c-Ha-ras Proto-Oncogenes,c-K-ras Genes,c-K-ras Proto-Oncogenes,c-Ki-ras Proto-Oncogenes,c-N-ras Proto-Oncogenes,ras Oncogene,v-H-ras Genes,v-H-ras Oncogenes,v-Ha-ras Oncogenes,v-K-ras Genes,v-K-ras Oncogenes,v-Ki-ras Oncogenes,Gene, Ha-ras,Gene, Ki-ras,Gene, v-Ha-ras,Gene, v-Ki-ras,Genes, Ha-ras,Genes, Ki-ras,Genes, N-ras,Genes, v-Ha-ras,Genes, v-Ki-ras,H ras Genes,H ras Oncogenes,H-ras Gene,H-ras Oncogene,Ha ras Genes,Ha ras Oncogenes,Ha-ras Gene,Ha-ras Oncogene,K ras Genes,K ras Oncogenes,K-ras Gene,K-ras Oncogene,Ki ras Genes,Ki ras Oncogenes,Ki-ras Gene,Ki-ras Oncogene,N ras Genes,N ras Oncogenes,N-ras Gene,N-ras Oncogene,c H ras Genes,c H ras Proto Oncogenes,c Ha ras Genes,c Ha ras Proto Oncogenes,c K ras Genes,c K ras Proto Oncogenes,c Ki ras Genes,c Ki ras Proto Oncogenes,c N ras Genes,c N ras Proto Oncogenes,c-H-ras Gene,c-H-ras Proto-Oncogene,c-Ha-ras Gene,c-Ha-ras Proto-Oncogene,c-K-ras Gene,c-K-ras Proto-Oncogene,c-Ki-ras Gene,c-Ki-ras Proto-Oncogene,c-N-ras Gene,c-N-ras Proto-Oncogene,ras Gene,ras Oncogenes,v H ras Genes,v H ras Oncogenes,v Ha ras Genes,v Ha ras Oncogenes,v K ras Genes,v K ras Oncogenes,v Ki ras Genes,v Ki ras Oncogenes,v-H-ras Gene,v-H-ras Oncogene,v-Ha-ras Gene,v-Ha-ras Oncogene,v-K-ras Gene,v-K-ras Oncogene,v-Ki-ras Gene,v-Ki-ras Oncogene
D002471 Cell Transformation, Neoplastic Cell changes manifested by escape from control mechanisms, increased growth potential, alterations in the cell surface, karyotypic abnormalities, morphological and biochemical deviations from the norm, and other attributes conferring the ability to invade, metastasize, and kill. Neoplastic Transformation, Cell,Neoplastic Cell Transformation,Transformation, Neoplastic Cell,Tumorigenic Transformation,Cell Neoplastic Transformation,Cell Neoplastic Transformations,Cell Transformations, Neoplastic,Neoplastic Cell Transformations,Neoplastic Transformations, Cell,Transformation, Cell Neoplastic,Transformation, Tumorigenic,Transformations, Cell Neoplastic,Transformations, Neoplastic Cell,Transformations, Tumorigenic,Tumorigenic Transformations
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003994 Bucladesine A cyclic nucleotide derivative that mimics the action of endogenous CYCLIC AMP and is capable of permeating the cell membrane. It has vasodilator properties and is used as a cardiac stimulant. (From Merck Index, 11th ed) Dibutyryl Adenosine-3',5'-Monophosphate,Dibutyryl Cyclic AMP,(But)(2) cAMP,Bucladesine, Barium (1:1) Salt,Bucladesine, Disodium Salt,Bucladesine, Monosodium Salt,Bucladesine, Sodium Salt,DBcAMP,Dibutyryl Adenosine 3,5 Monophosphate,N',O'-Dibutyryl-cAMP,N(6),0(2')-Dibutyryl Cyclic AMP,AMP, Dibutyryl Cyclic,Adenosine-3',5'-Monophosphate, Dibutyryl,Cyclic AMP, Dibutyryl,Dibutyryl Adenosine 3',5' Monophosphate,Disodium Salt Bucladesine,Monosodium Salt Bucladesine,N',O' Dibutyryl cAMP,Sodium Salt Bucladesine
D005353 Fibronectins Glycoproteins found on the surfaces of cells, particularly in fibrillar structures. The proteins are lost or reduced when these cells undergo viral or chemical transformation. They are highly susceptible to proteolysis and are substrates for activated blood coagulation factor VIII. The forms present in plasma are called cold-insoluble globulins. Cold-Insoluble Globulins,LETS Proteins,Fibronectin,Opsonic Glycoprotein,Opsonic alpha(2)SB Glycoprotein,alpha 2-Surface Binding Glycoprotein,Cold Insoluble Globulins,Globulins, Cold-Insoluble,Glycoprotein, Opsonic,Proteins, LETS,alpha 2 Surface Binding Glycoprotein
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein

Related Publications

A A Ridgway, and M W De Vouge, and B B Mukherjee
January 1982, Advances in experimental medicine and biology,
A A Ridgway, and M W De Vouge, and B B Mukherjee
March 1972, The Journal of experimental medicine,
A A Ridgway, and M W De Vouge, and B B Mukherjee
August 1974, Journal of virology,
A A Ridgway, and M W De Vouge, and B B Mukherjee
May 1969, Virology,
A A Ridgway, and M W De Vouge, and B B Mukherjee
December 1983, Molecular and cellular biology,
A A Ridgway, and M W De Vouge, and B B Mukherjee
September 1970, Virology,
A A Ridgway, and M W De Vouge, and B B Mukherjee
August 1987, Proceedings of the National Academy of Sciences of the United States of America,
A A Ridgway, and M W De Vouge, and B B Mukherjee
January 1977, International journal of cancer,
Copied contents to your clipboard!