Nucleotide sequence analysis and expression of a tetracycline-resistance gene from Campylobacter jejuni. 1988

E K Manavathu, and K Hiratsuka, and D E Taylor
Department of Medical Microbiology and Infectious Diseases, University of Alberta, Edmonton, Canada.

Resistance to tetracycline in the microaerophilic Gram-negative bacterium Campylobacter jejuni is plasmid-mediated. A 6.9-kb HindIII DNA fragment containing the tetracycline-resistance (TcR) gene (designated tetO) from the C. jejuni conjugative plasmid pUA466 was cloned into pUC8, and the resultant plasmid pUOA1 was used to transform Escherichia coli to Tc resistance. The tetO gene was localized at a 2.0-kb region comprising 0.2-kb and 1.8-kb HincII fragments, and the nucleotide sequences were determined. The protein coding region of tetO contained a 1911-bp open reading frame which corresponded to a 72.3-kDa protein. Upstream from the start codon were hexanucleotides that resembled the canonical sequences found at the -10 region, -35 region and the ribosome-binding site of the prokaryotic promoter. The tetO gene product was expressed utilizing an E. coli-derived in vitro transcription/translation system. The polypeptide had an apparent Mr of 68,000. Comparison of the amino acid sequences of TetO to those of TetM (derived from the Gram-positive Streptococcus pneumoniae) revealed 76% homology. Hydrophilicity plot analyses of TetO and TetM proteins provided almost identical profiles. These results clearly support our earlier [Taylor et al., J. Bacteriol. 169 (1987) 2984-2989] suggestion that TcR determinants found in Gram-positive bacteria and in C. jejuni may have a common ancestry.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D002168 Campylobacter fetus A species of bacteria present in man and many kinds of animals and birds, often causing infertility and/or abortion. Spirillum fetus,Vibrio fetus
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D004251 DNA Transposable Elements Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom. DNA Insertion Elements,DNA Transposons,IS Elements,Insertion Sequence Elements,Tn Elements,Transposable Elements,Elements, Insertion Sequence,Sequence Elements, Insertion,DNA Insertion Element,DNA Transposable Element,DNA Transposon,Element, DNA Insertion,Element, DNA Transposable,Element, IS,Element, Insertion Sequence,Element, Tn,Element, Transposable,Elements, DNA Insertion,Elements, DNA Transposable,Elements, IS,Elements, Tn,Elements, Transposable,IS Element,Insertion Element, DNA,Insertion Elements, DNA,Insertion Sequence Element,Sequence Element, Insertion,Tn Element,Transposable Element,Transposable Element, DNA,Transposable Elements, DNA,Transposon, DNA,Transposons, DNA
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D013753 Tetracycline Resistance Nonsusceptibility of bacteria to the action of TETRACYCLINE which inhibits aminoacyl-tRNA binding to the 30S ribosomal subunit during protein synthesis.

Related Publications

E K Manavathu, and K Hiratsuka, and D E Taylor
December 1983, Antimicrobial agents and chemotherapy,
E K Manavathu, and K Hiratsuka, and D E Taylor
September 1987, Antimicrobial agents and chemotherapy,
E K Manavathu, and K Hiratsuka, and D E Taylor
October 1980, Lancet (London, England),
E K Manavathu, and K Hiratsuka, and D E Taylor
August 1988, Journal of bacteriology,
E K Manavathu, and K Hiratsuka, and D E Taylor
April 2005, The Journal of antimicrobial chemotherapy,
E K Manavathu, and K Hiratsuka, and D E Taylor
January 1996, Acta microbiologica Polonica,
E K Manavathu, and K Hiratsuka, and D E Taylor
March 1993, Antimicrobial agents and chemotherapy,
E K Manavathu, and K Hiratsuka, and D E Taylor
February 2023, Antibiotics (Basel, Switzerland),
Copied contents to your clipboard!