SV40 T-antigen is a histocompatibility antigen of SV40-transgenic mice. 1988

P J Wettstein, and L Jewett, and S Faas, and R L Brinster, and B B Knowles
Wistar Institute of Anatomy and Biology, Philadelphia, PA 19104.

Although the extensive family of non-H-2 histocompatibility (H) antigens provides a formidable barrier to transplantation, the origin of their encoding genes are unknown. Recent studies have demonstrated both the linkage between H genes and retroviral sequences and the ability of integrated Moloney-murine leukemia virus to encode what is operationally defined as a non-H-2 H antigen. The experiments described in this communication reveal that skin grafts from an SV40 T-antigen transgenic C57BL/6 mouse strain are rejected by coisogenic C57BL/6 recipients with a median survival time of 49 days, which is comparable to those of many previously defined non-H-2 H antigens. The specificity of this response for SV40 T-antigen was demonstrated by the identification of SV40 T-antigen-specific cytolytic T lymphocytes and antibodies in multiply-grafted recipients. Although these cytolytic T lymphocytes could detect SV40 T-antigen on syngeneic SV40-transformed fibroblasts, they neither could be stimulated by splenic lymphocytes from T-antigen transgenics nor could they lyse lymphoblast targets from T-antigen transgenics. These observations suggest a limited tissue distribution of SV40 T-antigen in these transgenics. These results confirm the role of viral genes in the determination of non-H-2 histocompatibility antigens by the strict criteria that such antigens stimulate (1) tissue graft rejection and (2) generation of cytolytic T lymphocytes. Furthermore, they suggest that the SV40 enhancer and promoter region can target expression of SV-40 T-antigen to skin cells of transgenic animals.

UI MeSH Term Description Entries
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008822 Mice, Transgenic Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN. Transgenic Mice,Founder Mice, Transgenic,Mouse, Founder, Transgenic,Mouse, Transgenic,Mice, Transgenic Founder,Transgenic Founder Mice,Transgenic Mouse
D009928 Organ Specificity Characteristic restricted to a particular organ of the body, such as a cell type, metabolic response or expression of a particular protein or antigen. Tissue Specificity,Organ Specificities,Specificities, Organ,Specificities, Tissue,Specificity, Organ,Specificity, Tissue,Tissue Specificities
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D005814 Genes, Viral The functional hereditary units of VIRUSES. Viral Genes,Gene, Viral,Viral Gene
D006084 Graft Rejection An immune response with both cellular and humoral components, directed against an allogeneic transplant, whose tissue antigens are not compatible with those of the recipient. Transplant Rejection,Rejection, Transplant,Transplantation Rejection,Graft Rejections,Rejection, Graft,Rejection, Transplantation,Rejections, Graft,Rejections, Transplant,Rejections, Transplantation,Transplant Rejections,Transplantation Rejections
D006649 Histocompatibility Antigens A group of antigens that includes both the major and minor histocompatibility antigens. The former are genetically determined by the major histocompatibility complex. They determine tissue type for transplantation and cause allograft rejections. The latter are systems of allelic alloantigens that can cause weak transplant rejection. Transplantation Antigens,Antigens, Transplantation,Histocompatibility Antigen,LD Antigens,SD Antigens,Antigen, Histocompatibility,Antigens, Histocompatibility,Antigens, LD,Antigens, SD
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000914 Antibodies, Viral Immunoglobulins produced in response to VIRAL ANTIGENS. Viral Antibodies
D000952 Antigens, Polyomavirus Transforming Polyomavirus antigens which cause infection and cellular transformation. The large T antigen is necessary for the initiation of viral DNA synthesis, repression of transcription of the early region and is responsible in conjunction with the middle T antigen for the transformation of primary cells. Small T antigen is necessary for the completion of the productive infection cycle. Polyomavirus Large T Antigens,Polyomavirus Middle T Antigens,Polyomavirus Small T Antigens,Polyomavirus T Proteins,Polyomavirus Transforming Antigens,Polyomavirus Tumor Antigens,SV40 T Antigens,SV40 T Proteins,Simian Sarcoma Virus Proteins,Polyomaviruses Large T Proteins,Polyomaviruses Middle T Proteins,Polyomaviruses Small T Proteins,Antigens, Polyomavirus Tumor,Antigens, SV40 T,Proteins, Polyomavirus T,Proteins, SV40 T,T Antigens, SV40,T Proteins, Polyomavirus,T Proteins, SV40,Transforming Antigens, Polyomavirus,Tumor Antigens, Polyomavirus

Related Publications

P J Wettstein, and L Jewett, and S Faas, and R L Brinster, and B B Knowles
January 1989, Immunogenetics,
P J Wettstein, and L Jewett, and S Faas, and R L Brinster, and B B Knowles
November 1994, The American journal of physiology,
P J Wettstein, and L Jewett, and S Faas, and R L Brinster, and B B Knowles
January 1991, Princess Takamatsu symposia,
P J Wettstein, and L Jewett, and S Faas, and R L Brinster, and B B Knowles
October 1996, Cancer letters,
P J Wettstein, and L Jewett, and S Faas, and R L Brinster, and B B Knowles
June 1984, Cell,
P J Wettstein, and L Jewett, and S Faas, and R L Brinster, and B B Knowles
November 1991, Japanese journal of cancer research : Gann,
P J Wettstein, and L Jewett, and S Faas, and R L Brinster, and B B Knowles
September 1996, Science (New York, N.Y.),
P J Wettstein, and L Jewett, and S Faas, and R L Brinster, and B B Knowles
January 1991, Basic life sciences,
P J Wettstein, and L Jewett, and S Faas, and R L Brinster, and B B Knowles
December 1994, Cancer research,
P J Wettstein, and L Jewett, and S Faas, and R L Brinster, and B B Knowles
June 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!