Characterization of human rhinoviruses displaced by an anti-receptor monoclonal antibody. 1988

G Abraham, and R J Colonno
Department of Virus and Cell Biology, Merck Sharp and Dohme Research Laboratories, West Point, Pennsylvania 19486.

The attachment of rhinoviruses to cellular receptors was studied by displacing bound virus particles with an anti-receptor monoclonal antibody. The two serotypes studied differed significantly with respect to the temperature dependence of displacement and the nature of the particles displaced. Binding was shown to be a two-step process, the first of which is reversible and is seen when viruses are bound either to isolated cell membranes or to cells at lower than physiological temperatures. Second-stage binding was seen with serotype 14 when bound to intact cells. Viral particles released from such cells by incubation at 37 degrees C or by anti-receptor antibody exhibited altered physical changes in the capsid and a loss of infectivity. In contrast, serotype 67 bound efficiently to cells at 37 degrees C and did not elute spontaneously but could be displaced by anti-receptor antibody to produce complete, infectious particles. Rhinoviruses labeled with [3H]myristic acid or with [35S]methionine were displaced similarly from cells or membranes by anti-receptor antibody, indicating that the majority of VP4 of rhinoviruses does not enter or remain attached to cells during either the first or second stage of virus binding. These data support the conclusion that the myristic acid moiety of VP4 is not involved in the initial viral interaction with cellular receptors.

UI MeSH Term Description Entries
D011991 Receptors, Virus Specific molecular components of the cell capable of recognizing and interacting with a virus, and which, after binding it, are capable of generating some signal that initiates the chain of events leading to the biological response. Viral Entry Receptor,Viral Entry Receptors,Virus Attachment Factor,Virus Attachment Factors,Virus Attachment Receptor,Virus Attachment Receptors,Virus Entry Receptor,Virus Entry Receptors,Virus Receptor,Virus Receptors,Attachment Factor, Virus,Attachment Factors, Virus,Attachment Receptor, Virus,Attachment Receptors, Virus,Entry Receptor, Viral,Entry Receptor, Virus,Entry Receptors, Viral,Entry Receptors, Virus,Receptor, Viral Entry,Receptor, Virus,Receptor, Virus Attachment,Receptor, Virus Entry,Receptors, Viral Entry,Receptors, Virus Attachment,Receptors, Virus Entry
D002213 Capsid The outer protein protective shell of a virus, which protects the viral nucleic acid. Capsids are composed of repeating units (capsomers or capsomeres) of CAPSID PROTEINS which when assembled together form either an icosahedral or helical shape. Procapsid,Prohead,Capsids,Procapsids,Proheads
D006367 HeLa Cells The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for, among other things, VIRUS CULTIVATION and PRECLINICAL DRUG EVALUATION assays. Cell, HeLa,Cells, HeLa,HeLa Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal
D001667 Binding, Competitive The interaction of two or more substrates or ligands with the same binding site. The displacement of one by the other is used in quantitative and selective affinity measurements. Competitive Binding
D012229 Rhinovirus A genus of PICORNAVIRIDAE inhabiting primarily the respiratory tract of mammalian hosts. It includes over 100 human serotypes associated with the COMMON COLD. Common Cold Virus,Coryza Viruses,Cold Virus, Common,Cold Viruses, Common,Common Cold Viruses,Coryza Virus,Rhinoviruses
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures

Related Publications

G Abraham, and R J Colonno
February 2006, Biotechnology letters,
G Abraham, and R J Colonno
May 2009, British journal of pharmacology,
G Abraham, and R J Colonno
January 1996, Immunohematology,
G Abraham, and R J Colonno
March 1986, Scandinavian journal of immunology,
G Abraham, and R J Colonno
October 2011, Journal of molecular biology,
G Abraham, and R J Colonno
November 1985, The Journal of biological chemistry,
Copied contents to your clipboard!