The effects of ovarian hormones on beta-adrenergic and muscarinic receptors in rat heart. 1988

B Klangkalya, and A Chan
Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson 39216.

The in vitro and in vivo effects of estrogen and progesterone on muscarinic and beta-adrenergic receptors of cardiac tissue were studied in ovariectomized (OVX) rats. The binding assay for muscarinic receptors was performed under a nonequilibrium condition; whereas the binding assay for beta-adrenergic receptors, under an equilibrium condition. Estrogenic compounds and progesterone were found to have no effect on the binding of the radioligand, [3H]-dihydroalprenolol, to beta-adrenergic receptors in vitro. However, progestins but not estrogenic compounds inhibited the binding of the radioligand, [3H]-quinuclidinyl benzilate, to muscarinic receptors in vitro, with progesterone as the most potent inhibitor (IC50 = 37 microM, apparent Ki = 13 microM). Progesterone was found to decrease the apparent affinity of muscarinic receptors for [3H](-)QNB in vitro. Daily treatment of OVX rats with estradiol benzoate (4 micrograms) or progesterone (2.5 mg) for 4 days had no effect on the muscarinic or beta-adrenergic receptors with respect to the binding affinity and receptor density. However, administrations of these hormones together for 4 days caused an increase in the receptor density of muscarinic receptors without a significant effect on their apparent binding affinity; also these hormones induced a decrease in the binding affinity and an increase in the receptor density of beta-adrenergic receptors. The results of this study demonstrate that progestins are capable of interacting with the cardiac muscarinic receptors in vitro, and indicate that estrogen and progesterone have a synergistic effect to increase the receptor densities of muscarinic and beta-adrenergic receptors as well as to cause a decrease in the binding affinity of beta-adrenergic receptors in vivo.

UI MeSH Term Description Entries
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D010052 Ovariectomy The surgical removal of one or both ovaries. Castration, Female,Oophorectomy,Bilateral Ovariectomy,Bilateral Ovariectomies,Castrations, Female,Female Castration,Female Castrations,Oophorectomies,Ovariectomies,Ovariectomies, Bilateral,Ovariectomy, Bilateral
D011372 Progestins Compounds that interact with PROGESTERONE RECEPTORS in target tissues to bring about the effects similar to those of PROGESTERONE. Primary actions of progestins, including natural and synthetic steroids, are on the UTERUS and the MAMMARY GLAND in preparation for and in maintenance of PREGNANCY. Gestagenic Agent,Progestagen,Progestagenic Agent,Progestational Agent,Progestational Compound,Progestational Hormone,Progestogen,Progestogens,Gestagen,Gestagen Effect,Gestagen Effects,Gestagenic Agents,Gestagenic Effect,Gestagenic Effects,Gestagens,Progestagenic Agents,Progestagens,Progestational Agents,Progestational Compounds,Progestational Hormones,Progestin,Progestin Effect,Progestin Effects,Progestogen Effect,Progestogen Effects,Agent, Gestagenic,Agent, Progestagenic,Agent, Progestational,Compound, Progestational,Effect, Gestagen,Effect, Gestagenic,Effect, Progestin,Effect, Progestogen,Effects, Gestagen,Effects, Gestagenic,Effects, Progestin,Effects, Progestogen,Hormone, Progestational
D011374 Progesterone The major progestational steroid that is secreted primarily by the CORPUS LUTEUM and the PLACENTA. Progesterone acts on the UTERUS, the MAMMARY GLANDS and the BRAIN. It is required in EMBRYO IMPLANTATION; PREGNANCY maintenance, and the development of mammary tissue for MILK production. Progesterone, converted from PREGNENOLONE, also serves as an intermediate in the biosynthesis of GONADAL STEROID HORMONES and adrenal CORTICOSTEROIDS. Pregnenedione,Progesterone, (13 alpha,17 alpha)-(+-)-Isomer,Progesterone, (17 alpha)-Isomer,Progesterone, (9 beta,10 alpha)-Isomer
D011813 Quinuclidinyl Benzilate A high-affinity muscarinic antagonist commonly used as a tool in animal and tissue studies. Benzilate, Quinuclidinyl
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D011943 Receptors, Adrenergic, beta One of two major pharmacologically defined classes of adrenergic receptors. The beta adrenergic receptors play an important role in regulating CARDIAC MUSCLE contraction, SMOOTH MUSCLE relaxation, and GLYCOGENOLYSIS. Adrenergic beta-Receptor,Adrenergic beta-Receptors,Receptors, beta-Adrenergic,beta Adrenergic Receptor,beta-Adrenergic Receptor,beta-Adrenergic Receptors,Receptor, Adrenergic, beta,Adrenergic Receptor, beta,Adrenergic beta Receptor,Adrenergic beta Receptors,Receptor, beta Adrenergic,Receptor, beta-Adrenergic,Receptors, beta Adrenergic,beta Adrenergic Receptors,beta-Receptor, Adrenergic,beta-Receptors, Adrenergic
D011976 Receptors, Muscarinic One of the two major classes of cholinergic receptors. Muscarinic receptors were originally defined by their preference for MUSCARINE over NICOTINE. There are several subtypes (usually M1, M2, M3....) that are characterized by their cellular actions, pharmacology, and molecular biology. Muscarinic Acetylcholine Receptors,Muscarinic Receptors,Muscarinic Acetylcholine Receptor,Muscarinic Receptor,Acetylcholine Receptor, Muscarinic,Acetylcholine Receptors, Muscarinic,Receptor, Muscarinic,Receptor, Muscarinic Acetylcholine,Receptors, Muscarinic Acetylcholine
D004082 Dihydroalprenolol Hydrogenated alprenolol derivative where the extra hydrogens are often tritiated. This radiolabeled form of ALPRENOLOL, a beta-adrenergic blocker, is used to label the beta-adrenergic receptor for isolation and study. 1-((Methylethyl)amino)-3-(2-propylphenoxy)-2-propanol
D004958 Estradiol The 17-beta-isomer of estradiol, an aromatized C18 steroid with hydroxyl group at 3-beta- and 17-beta-position. Estradiol-17-beta is the most potent form of mammalian estrogenic steroids. 17 beta-Estradiol,Estradiol-17 beta,Oestradiol,17 beta-Oestradiol,Aerodiol,Delestrogen,Estrace,Estraderm TTS,Estradiol Anhydrous,Estradiol Hemihydrate,Estradiol Hemihydrate, (17 alpha)-Isomer,Estradiol Monohydrate,Estradiol Valerate,Estradiol Valeriante,Estradiol, (+-)-Isomer,Estradiol, (-)-Isomer,Estradiol, (16 alpha,17 alpha)-Isomer,Estradiol, (16 alpha,17 beta)-Isomer,Estradiol, (17-alpha)-Isomer,Estradiol, (8 alpha,17 beta)-(+-)-Isomer,Estradiol, (8 alpha,17 beta)-Isomer,Estradiol, (9 beta,17 alpha)-Isomer,Estradiol, (9 beta,17 beta)-Isomer,Estradiol, Monosodium Salt,Estradiol, Sodium Salt,Estradiol-17 alpha,Estradiol-17beta,Ovocyclin,Progynon-Depot,Progynova,Vivelle,17 beta Estradiol,17 beta Oestradiol,Estradiol 17 alpha,Estradiol 17 beta,Estradiol 17beta,Progynon Depot

Related Publications

B Klangkalya, and A Chan
May 1989, Circulation research,
B Klangkalya, and A Chan
May 1977, European journal of pharmacology,
B Klangkalya, and A Chan
April 1983, Japanese journal of pharmacology,
B Klangkalya, and A Chan
December 1999, Pharmacological reviews,
B Klangkalya, and A Chan
August 1993, Pflugers Archiv : European journal of physiology,
Copied contents to your clipboard!