Precursors of cholinergic false transmitters: central effects on blood pressure and direct interactions with cholinergic receptors. 1988

J J Buccafusco, and R S Aronstam
Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta 30912-3368.

The purpose of this study was to determine whether a series of analogs of choline depress central cholinergic function in a manner consistent with the activity of their acetylated derivatives. Intracerebroventricular infusion of monoethylcholine (MECh), diethylcholine (DECh) and triethylcholine (TECh) inhibited the pressor response of unanesthetized rats to the subsequent intravenous injection of physostigmine (a well-characterized muscarinic response). The order of blocking potency was TECh greater than DECh greater than MECh greater than choline, directly opposite to the order of potency for elicitation of a central pressor response by their associated acetylated derivative (i.e. ACh greater than AMECh greater than ADECh = ATECh; Aronstam, Marshall and Buccafusco, 1988). In contrast, there was little selectivity between the analogs of choline in terms of their affinity for muscarinic receptors in the brainstem or cortex; the Ki's for inhibition of the binding of [3H]quinuclidinyl benzilate ranged from 0.33 to 0.95 mM). In terms of their affinity for nicotinic receptors (from the electric organ of Torpedo californica) the following order of potency was obtained: choline greater than MECh = DECh greater than TECh. Choline and MEC stimulated the binding of [3H]phencyclidine to the nicotinic ion channel (EC50's = 79 and 115 microM, respectively). At greater concentrations, all of the analogs inhibited ligand binding to the channel (Ki's from 0.2 to 10 mM), with the following order of potency: TECh greater than DECh greater than MECh greater than choline. These findings suggest that the inhibitory actions of these analogs of choline are related to their synthesis and release as false cholinergic neurotransmitters.

UI MeSH Term Description Entries
D008297 Male Males
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D011950 Receptors, Cholinergic Cell surface proteins that bind acetylcholine with high affinity and trigger intracellular changes influencing the behavior of cells. Cholinergic receptors are divided into two major classes, muscarinic and nicotinic, based originally on their affinity for nicotine and muscarine. Each group is further subdivided based on pharmacology, location, mode of action, and/or molecular biology. ACh Receptor,Acetylcholine Receptor,Acetylcholine Receptors,Cholinergic Receptor,Cholinergic Receptors,Cholinoceptive Sites,Cholinoceptor,Cholinoceptors,Receptors, Acetylcholine,ACh Receptors,Receptors, ACh,Receptor, ACh,Receptor, Acetylcholine,Receptor, Cholinergic,Sites, Cholinoceptive
D011976 Receptors, Muscarinic One of the two major classes of cholinergic receptors. Muscarinic receptors were originally defined by their preference for MUSCARINE over NICOTINE. There are several subtypes (usually M1, M2, M3....) that are characterized by their cellular actions, pharmacology, and molecular biology. Muscarinic Acetylcholine Receptors,Muscarinic Receptors,Muscarinic Acetylcholine Receptor,Muscarinic Receptor,Acetylcholine Receptor, Muscarinic,Acetylcholine Receptors, Muscarinic,Receptor, Muscarinic,Receptor, Muscarinic Acetylcholine,Receptors, Muscarinic Acetylcholine
D011978 Receptors, Nicotinic One of the two major classes of cholinergic receptors. Nicotinic receptors were originally distinguished by their preference for NICOTINE over MUSCARINE. They are generally divided into muscle-type and neuronal-type (previously ganglionic) based on pharmacology, and subunit composition of the receptors. Nicotinic Acetylcholine Receptors,Nicotinic Receptors,Nicotinic Acetylcholine Receptor,Nicotinic Receptor,Acetylcholine Receptor, Nicotinic,Acetylcholine Receptors, Nicotinic,Receptor, Nicotinic,Receptor, Nicotinic Acetylcholine,Receptors, Nicotinic Acetylcholine
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D002319 Cardiovascular System The HEART and the BLOOD VESSELS by which BLOOD is pumped and circulated through the body. Circulatory System,Cardiovascular Systems,Circulatory Systems
D002794 Choline A basic constituent of lecithin that is found in many plants and animal organs. It is important as a precursor of acetylcholine, as a methyl donor in various metabolic processes, and in lipid metabolism. Bursine,Fagine,Vidine,2-Hydroxy-N,N,N-trimethylethanaminium,Choline Bitartrate,Choline Chloride,Choline Citrate,Choline Hydroxide,Choline O-Sulfate,Bitartrate, Choline,Chloride, Choline,Choline O Sulfate,Citrate, Choline,Hydroxide, Choline,O-Sulfate, Choline
D006426 Hemicholinium 3 A potent inhibitor of the high affinity uptake system for CHOLINE. It has less effect on the low affinity uptake system. Since choline is one of the components of ACETYLCHOLINE, treatment with hemicholinium can deplete acetylcholine from cholinergic terminals. Hemicholinium 3 is commonly used as a research tool in animal and in vitro experiments. Hemicholinium

Related Publications

J J Buccafusco, and R S Aronstam
January 1979, Progress in brain research,
J J Buccafusco, and R S Aronstam
November 1980, Journal of neurochemistry,
J J Buccafusco, and R S Aronstam
January 1979, Progress in brain research,
J J Buccafusco, and R S Aronstam
January 1971, Federation proceedings,
J J Buccafusco, and R S Aronstam
June 1992, European heart journal,
J J Buccafusco, and R S Aronstam
January 1991, Drug metabolism and drug interactions,
J J Buccafusco, and R S Aronstam
February 1979, Lancet (London, England),
J J Buccafusco, and R S Aronstam
June 2006, Neuropharmacology,
Copied contents to your clipboard!