Calcium antagonism and vascular smooth muscle. 1988

J M van Nueten, and W J Janssens, and P M Vanhoutte
Department of Pharmacodynamics, Janssen Pharmaceutica, Beerse, Belgium.

Vasoconstriction results from an exaggerated increase of intracellular Ca2+ concentration which initiates the contractile process within the vascular smooth muscle. The dependency of these cells on extracellular Ca2+ to trigger the contractile process when exposed to naturally occurring vasoactive substances such as those released from aggregating blood platelets varies in different vascular areas. This is one of the factors that determine the different sensitivity to the inhibitory effect of various calcium antagonist. A blood vessel can be more reactive to some calcium antagonists than to others, depending on the vascular area. Experiments on isolated cerebral arteries suggest that inhibition of cerebral vasoconstriction is observed with substances such as flunarizine under conditions of vascular hyperresponsiveness generated by acute or chronic pathological conditions or triggered by interaction between vasoactive substances. In this regard marked differences exist between the individual calcium antagonists. Those that are selective for slow Ca2+ channels will inhibit myocardial contractile force and decrease vascular myogenic activity (e.g., at the arteriolar level). Such inhibitory activity is not observed with flunarizine, which affects Ca2+ entry rather selectively, when calcium overload is imposed upon the vasculature, in particular at cerebrovascular sites. This suggests a potential use of this compound in a number of neurological disorders related to cerebral ischemia.

UI MeSH Term Description Entries
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D011942 Receptors, Adrenergic, alpha One of the two major pharmacological subdivisions of adrenergic receptors that were originally defined by the relative potencies of various adrenergic compounds. The alpha receptors were initially described as excitatory receptors that post-junctionally stimulate SMOOTH MUSCLE contraction. However, further analysis has revealed a more complex picture involving several alpha receptor subtypes and their involvement in feedback regulation. Adrenergic alpha-Receptor,Adrenergic alpha-Receptors,Receptors, alpha-Adrenergic,alpha-Adrenergic Receptor,alpha-Adrenergic Receptors,Receptor, Adrenergic, alpha,Adrenergic alpha Receptor,Adrenergic alpha Receptors,Receptor, alpha-Adrenergic,Receptors, alpha Adrenergic,alpha Adrenergic Receptor,alpha Adrenergic Receptors,alpha-Receptor, Adrenergic,alpha-Receptors, Adrenergic
D002121 Calcium Channel Blockers A class of drugs that act by selective inhibition of calcium influx through cellular membranes. Calcium Antagonists, Exogenous,Calcium Blockaders, Exogenous,Calcium Channel Antagonist,Calcium Channel Blocker,Calcium Channel Blocking Drug,Calcium Inhibitors, Exogenous,Channel Blockers, Calcium,Exogenous Calcium Blockader,Exogenous Calcium Inhibitor,Calcium Channel Antagonists,Calcium Channel Blocking Drugs,Exogenous Calcium Antagonists,Exogenous Calcium Blockaders,Exogenous Calcium Inhibitors,Antagonist, Calcium Channel,Antagonists, Calcium Channel,Antagonists, Exogenous Calcium,Blockader, Exogenous Calcium,Blocker, Calcium Channel,Blockers, Calcium Channel,Calcium Blockader, Exogenous,Calcium Inhibitor, Exogenous,Channel Antagonist, Calcium,Channel Blocker, Calcium,Inhibitor, Exogenous Calcium
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014661 Vasoconstriction The physiological narrowing of BLOOD VESSELS by contraction of the VASCULAR SMOOTH MUSCLE. Vasoconstrictions
D014662 Vasoconstrictor Agents Drugs used to cause constriction of the blood vessels. Vasoactive Agonist,Vasoactive Agonists,Vasoconstrictor,Vasoconstrictor Agent,Vasoconstrictor Drug,Vasopressor Agent,Vasopressor Agents,Vasoconstrictor Drugs,Vasoconstrictors,Agent, Vasoconstrictor,Agent, Vasopressor,Agents, Vasoconstrictor,Agents, Vasopressor,Agonist, Vasoactive,Agonists, Vasoactive,Drug, Vasoconstrictor,Drugs, Vasoconstrictor

Related Publications

J M van Nueten, and W J Janssens, and P M Vanhoutte
January 1996, Pflugers Archiv : European journal of physiology,
J M van Nueten, and W J Janssens, and P M Vanhoutte
January 1985, Medicinal research reviews,
J M van Nueten, and W J Janssens, and P M Vanhoutte
February 1983, Journal of pharmacological methods,
J M van Nueten, and W J Janssens, and P M Vanhoutte
January 1987, Journal of cardiovascular pharmacology,
J M van Nueten, and W J Janssens, and P M Vanhoutte
May 1971, Circulation research,
J M van Nueten, and W J Janssens, and P M Vanhoutte
January 1986, Progress in clinical and biological research,
J M van Nueten, and W J Janssens, and P M Vanhoutte
March 1987, The American journal of medicine,
J M van Nueten, and W J Janssens, and P M Vanhoutte
August 1991, The Journal of pharmacy and pharmacology,
J M van Nueten, and W J Janssens, and P M Vanhoutte
January 1982, Circulation,
J M van Nueten, and W J Janssens, and P M Vanhoutte
January 1986, Annals of the New York Academy of Sciences,
Copied contents to your clipboard!