Human arterial smooth muscle cells in culture. Effects of platelet-derived growth factor and heparin on growth in vitro. 1988

G Fager, and G K Hansson, and P Ottosson, and B Dahllöf, and G Bondjers
Department of Medicine I, Wallenberg Laboratory for Cardiovascular Research, University of Göteborg, Sweden.

Human arterial smooth muscle cells (hASMC) were cultured from explants of the inner media of uterine arteries obtained at hysterectomy. The presence of alpha-actin and smooth muscle-specific actin isoforms and the microscopic appearance of the cells in secondary culture established their smooth muscle origin. The hASMC were diploid and had no signs of transformation. Plasma-derived serum failed to stimulate their proliferation in vitro. Their rate of proliferation was, however, proportional to the concentration of whole blood serum in the medium. Anti-PDGF IgG at high concentrations inhibited the stimulatory effect of whole blood serum on cell proliferation. This suggests that hASMC depend on exogenous PDGF for their growth. In PDS or bovine serum albumin cell numbers remained constant for 7 days in culture and the thymidine index was below 1% per 24 h. When reexposed to whole blood serum these cells started to proliferate within 2 days. This indicates that hASMC when deprived of PDGF enter a quiescent state that is fully reversible upon rexposure to the mitogen. Heparin is a powerful growth inhibitor for SMC. In our system, heparin caused a dose-dependent inhibition of cell proliferation despite optimal concentrations of whole blood serum. This inhibition was reversible upon withdrawal of heparin. At heparin concentrations which caused a half-maximal inhibition it was also competed for by increasing concentrations of whole blood serum. Quiescent hASMC expressed the PDGF receptor on their surface as judged from immunofluorescence with a monoclonal antibody. This was true irrespective of whether growth arrest was achieved by serum depletion or by the addition of heparin to serum-containing medium. Cells growing in the presence of whole blood serum did not, however, express the receptor antigen. These observations suggest that heparin may interfere with PDGF or with its binding and further processing at the level of the cell-surface receptor.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D010982 Platelet-Derived Growth Factor Mitogenic peptide growth hormone carried in the alpha-granules of platelets. It is released when platelets adhere to traumatized tissues. Connective tissue cells near the traumatized region respond by initiating the process of replication. Platelet Derived Growth Factor,Factor, Platelet-Derived Growth,Growth Factor, Platelet-Derived
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D005260 Female Females
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D006493 Heparin A highly acidic mucopolysaccharide formed of equal parts of sulfated D-glucosamine and D-glucuronic acid with sulfaminic bridges. The molecular weight ranges from six to twenty thousand. Heparin occurs in and is obtained from liver, lung, mast cells, etc., of vertebrates. Its function is unknown, but it is used to prevent blood clotting in vivo and vitro, in the form of many different salts. Heparinic Acid,alpha-Heparin,Heparin Sodium,Liquaemin,Sodium Heparin,Unfractionated Heparin,Heparin, Sodium,Heparin, Unfractionated,alpha Heparin

Related Publications

G Fager, and G K Hansson, and P Ottosson, and B Dahllöf, and G Bondjers
November 1997, Arteriosclerosis, thrombosis, and vascular biology,
G Fager, and G K Hansson, and P Ottosson, and B Dahllöf, and G Bondjers
July 1985, Proceedings of the National Academy of Sciences of the United States of America,
G Fager, and G K Hansson, and P Ottosson, and B Dahllöf, and G Bondjers
January 1981, Artery,
G Fager, and G K Hansson, and P Ottosson, and B Dahllöf, and G Bondjers
March 1992, In vitro cellular & developmental biology : journal of the Tissue Culture Association,
G Fager, and G K Hansson, and P Ottosson, and B Dahllöf, and G Bondjers
January 1991, Arteriosclerosis and thrombosis : a journal of vascular biology,
G Fager, and G K Hansson, and P Ottosson, and B Dahllöf, and G Bondjers
June 1996, Magnesium research,
G Fager, and G K Hansson, and P Ottosson, and B Dahllöf, and G Bondjers
April 1993, Acta pathologica japonica,
G Fager, and G K Hansson, and P Ottosson, and B Dahllöf, and G Bondjers
March 1992, In vitro cellular & developmental biology : journal of the Tissue Culture Association,
G Fager, and G K Hansson, and P Ottosson, and B Dahllöf, and G Bondjers
January 1994, Cell and tissue research,
Copied contents to your clipboard!