1H nuclear magnetic resonance study of the protonation behaviour of the histidine residues and the electron self-exchange reaction of azurin from Alcaligenes denitrificans. 1988
The proton nuclear magnetic resonance spectrum of azurin from Alcaligenes denitrificans at pH 6.0 and 309 K is reported. Proton signals from all methionine and histidine residues (among them the copper ligands) have been assigned. The data have been used to study the pH behaviour of His35 and to establish the electron self-exchange rate of the protein. His35 appears to be protonated at pH less than 4.5, possibly after rupture of a salt bridge. No effects of this protonation on the tertiary structure around the copper site are observed, however, contrary to the case of Pseudomonas aeruginosa azurin. The electron self-exchange rate amounts to 4 x 10(5) M-1 S-1 at pH 6.7 and 297 K. The data support the conclusion that the electron self-exchange takes place by way of the hydrophobic surface patch around His117, and that His35 is not involved in this reaction. Oxidation of azurin increases the acidity of the freely titrating His32 and His83 by 0.07 and 0.25 pKa units, respectively. The data can be used to test the theory of electrostatic interactions in proteins. The optical extinction coefficient at 625 nm was experimentally determined and amounts to 4.8(+/- 0.1) x 10(3) M-1 cm-1.