Role of mu 1-opiate receptors in supraspinal opiate analgesia: a microinjection study. 1988

R J Bodnar, and C L Williams, and S J Lee, and G W Pasternak
Cotzias Laboratory of Neuro-Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021.

Microinjection of opiates into either the periaqueductual gray, locus coeruleus, nucleus raphe magnus, or nucleus reticularis gigantocellularis elicits a profound naloxone-sensitive analgesia. mu-Opioid receptors have been implicated in supraspinal analgesia and studies from our laboratory have demonstrated the importance of the mu 1-receptor subtype. In an effort to examine the receptor subtypes responsible for opioid analgesia in specific brain regions, we examined dose-response relationships and naloxonazine sensitivity of morphine and two enkephalin derivatives in the above 4 brain regions. Both morphine and [D-Ser2,Leu5]enkephalin-Thr6 (DSLET) were effective analgesics in all regions examined. The poor affinity of DSLET for mu 2-receptors and of morphine for delta-receptors, combined with their similar, high affinity for mu 1-receptors, implied a mu 1-mechanism of action. The mu 1-selective antagonist naloxonazine effectively blocked the analgesic responses of both compounds in all regions. [D-Pen2,D-Pen5]enkephalin (DPDPE), a potent delta-ligand which does not interact with mu 1-receptors, did not elicit analgesia in either the periaqueductal gray or locus coeruleus at any dose tested. These results suggest that opiates and opioid peptides produce analgesia in these 4 brain regions through mu 1-receptors. The inactivity of DPDPE argues against a role for delta-receptors and the similar analgesic potencies of morphine and DSLET makes a significant role for mu 2-receptors unlikely.

UI MeSH Term Description Entries
D007275 Injections, Intravenous Injections made into a vein for therapeutic or experimental purposes. Intravenous Injections,Injection, Intravenous,Intravenous Injection
D007276 Injections, Intraventricular Injections into the cerebral ventricles. Intraventricular Injections,Injection, Intraventricular,Intraventricular Injection
D008297 Male Males
D008845 Microinjections The injection of very small amounts of fluid, often with the aid of a microscope and microsyringes. Microinjection
D009020 Morphine The principal alkaloid in opium and the prototype opiate analgesic and narcotic. Morphine has widespread effects in the central nervous system and on smooth muscle. Morphine Sulfate,Duramorph,MS Contin,Morphia,Morphine Chloride,Morphine Sulfate (2:1), Anhydrous,Morphine Sulfate (2:1), Pentahydrate,Oramorph SR,SDZ 202-250,SDZ202-250,Chloride, Morphine,Contin, MS,SDZ 202 250,SDZ 202250,SDZ202 250,SDZ202250,Sulfate, Morphine
D009842 Oligopeptides Peptides composed of between two and twelve amino acids. Oligopeptide
D009928 Organ Specificity Characteristic restricted to a particular organ of the body, such as a cell type, metabolic response or expression of a particular protein or antigen. Tissue Specificity,Organ Specificities,Specificities, Organ,Specificities, Tissue,Specificity, Organ,Specificity, Tissue,Tissue Specificities
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D011957 Receptors, Opioid Cell membrane proteins that bind opioids and trigger intracellular changes which influence the behavior of cells. The endogenous ligands for opioid receptors in mammals include three families of peptides, the enkephalins, endorphins, and dynorphins. The receptor classes include mu, delta, and kappa receptors. Sigma receptors bind several psychoactive substances, including certain opioids, but their endogenous ligands are not known. Endorphin Receptors,Enkephalin Receptors,Narcotic Receptors,Opioid Receptors,Receptors, Endorphin,Receptors, Enkephalin,Receptors, Narcotic,Receptors, Opiate,Endorphin Receptor,Enkephalin Receptor,Normorphine Receptors,Opiate Receptor,Opiate Receptors,Opioid Receptor,Receptors, Normorphine,Receptors, beta-Endorphin,beta-Endorphin Receptor,Receptor, Endorphin,Receptor, Enkephalin,Receptor, Opiate,Receptor, Opioid,Receptor, beta-Endorphin,Receptors, beta Endorphin,beta Endorphin Receptor,beta-Endorphin Receptors
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon

Related Publications

R J Bodnar, and C L Williams, and S J Lee, and G W Pasternak
September 2007, The Journal of pharmacology and experimental therapeutics,
R J Bodnar, and C L Williams, and S J Lee, and G W Pasternak
April 2004, Proceedings of the National Academy of Sciences of the United States of America,
R J Bodnar, and C L Williams, and S J Lee, and G W Pasternak
May 1990, Neuropharmacology,
R J Bodnar, and C L Williams, and S J Lee, and G W Pasternak
June 1994, European journal of pharmacology,
R J Bodnar, and C L Williams, and S J Lee, and G W Pasternak
December 1994, Neuroreport,
R J Bodnar, and C L Williams, and S J Lee, and G W Pasternak
May 1986, Life sciences,
R J Bodnar, and C L Williams, and S J Lee, and G W Pasternak
September 1992, European journal of pharmacology,
R J Bodnar, and C L Williams, and S J Lee, and G W Pasternak
November 2000, The Journal of neuroscience : the official journal of the Society for Neuroscience,
R J Bodnar, and C L Williams, and S J Lee, and G W Pasternak
February 1989, Brain research,
R J Bodnar, and C L Williams, and S J Lee, and G W Pasternak
January 2013, Current pharmaceutical design,
Copied contents to your clipboard!