Voltage-gated potassium currents in cultured ovine oligodendrocytes. 1988

B Soliven, and S Szuchet, and B G Arnason, and D J Nelson
Department of Neurology, University of Chicago, Illinois 60637.

Cultured oligodendrocytes (OLGs) develop processes and form myelin following attachment to a substratum. We applied the whole-cell voltage-clamp technique to identify and characterize the ionic currents of OLGs in culture. Within 2 d after attachment, OLGs extended processes and began to express an outward current that represents a composite response of an inactivating/transient component and a non-inactivating component. The current had a reversal potential of -66 mV and was sensitive to potassium channel blockers. After 4-5 d in culture, the transient component was less prominent, often accompanied by an increase in noninactivating or steady-state outward current. In addition, there was an increase in inward rectifier current. Four of 7 cells that failed to develop processes exhibited only linear high-resistance membranes. We conclude that cultured OLGs express 3 voltage-gated potassium conductances: (1) a transient outward current, (2) a noninactivating outward current, and (3) an inward rectifier current. The sequential appearance of the several currents may relate, at least in part, to process formation.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009457 Neuroglia The non-neuronal cells of the nervous system. They not only provide physical support, but also respond to injury, regulate the ionic and chemical composition of the extracellular milieu, participate in the BLOOD-BRAIN BARRIER and BLOOD-RETINAL BARRIER, form the myelin insulation of nervous pathways, guide neuronal migration during development, and exchange metabolites with neurons. Neuroglia have high-affinity transmitter uptake systems, voltage-dependent and transmitter-gated ion channels, and can release transmitters, but their role in signaling (as in many other functions) is unclear. Bergmann Glia,Bergmann Glia Cells,Bergmann Glial Cells,Glia,Glia Cells,Satellite Glia,Satellite Glia Cells,Satellite Glial Cells,Glial Cells,Neuroglial Cells,Bergmann Glia Cell,Bergmann Glial Cell,Cell, Bergmann Glia,Cell, Bergmann Glial,Cell, Glia,Cell, Glial,Cell, Neuroglial,Cell, Satellite Glia,Cell, Satellite Glial,Glia Cell,Glia Cell, Bergmann,Glia Cell, Satellite,Glia, Bergmann,Glia, Satellite,Glial Cell,Glial Cell, Bergmann,Glial Cell, Satellite,Glias,Neuroglial Cell,Neuroglias,Satellite Glia Cell,Satellite Glial Cell,Satellite Glias
D009836 Oligodendroglia A class of large neuroglial (macroglial) cells in the central nervous system. Oligodendroglia may be called interfascicular, perivascular, or perineuronal (not the same as SATELLITE CELLS, PERINEURONAL of GANGLIA) according to their location. They form the insulating MYELIN SHEATH of axons in the central nervous system. Interfascicular Oligodendroglia,Oligodendrocytes,Perineuronal Oligodendroglia,Perineuronal Satellite Oligodendroglia Cells,Perivascular Oligodendroglia,Satellite Cells, Perineuronal, Oligodendroglia,Perineuronal Satellite Oligodendrocytes,Interfascicular Oligodendroglias,Oligodendrocyte,Oligodendrocyte, Perineuronal Satellite,Oligodendrocytes, Perineuronal Satellite,Oligodendroglia, Interfascicular,Oligodendroglia, Perineuronal,Oligodendroglia, Perivascular,Perineuronal Satellite Oligodendrocyte,Satellite Oligodendrocyte, Perineuronal,Satellite Oligodendrocytes, Perineuronal
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002586 Cesium A member of the alkali metals. It has an atomic symbol Cs, atomic number 55, and atomic weight 132.91. Cesium has many industrial applications, including the construction of atomic clocks based on its atomic vibrational frequency. Caesium,Caesium-133,Cesium-133,Caesium 133,Cesium 133
D004586 Electrophoresis An electrochemical process in which macromolecules or colloidal particles with a net electric charge migrate in a solution under the influence of an electric current. Electrophoreses
D000631 Aminopyridines Pyridines substituted in any position with an amino group. May be hydrogenated but must retain at least one double bond. Aminopyridine

Related Publications

B Soliven, and S Szuchet, and B G Arnason, and D J Nelson
July 1992, Journal of neuroscience research,
B Soliven, and S Szuchet, and B G Arnason, and D J Nelson
January 1988, Glia,
B Soliven, and S Szuchet, and B G Arnason, and D J Nelson
September 1982, Neuroscience letters,
B Soliven, and S Szuchet, and B G Arnason, and D J Nelson
August 1989, The Journal of physiology,
B Soliven, and S Szuchet, and B G Arnason, and D J Nelson
January 1985, Nature,
B Soliven, and S Szuchet, and B G Arnason, and D J Nelson
January 1989, Glia,
B Soliven, and S Szuchet, and B G Arnason, and D J Nelson
May 1995, Neuroscience letters,
B Soliven, and S Szuchet, and B G Arnason, and D J Nelson
September 2013, The Journal of general physiology,
B Soliven, and S Szuchet, and B G Arnason, and D J Nelson
August 1998, The American journal of physiology,
B Soliven, and S Szuchet, and B G Arnason, and D J Nelson
December 2016, Circulation research,
Copied contents to your clipboard!