Altered biochemical and functional responses in aorta from hypertensive rats. 1988

A W Jones, and B B Geisbuhler, and S D Shukla, and J M Smith
Department of Physiology, University of Missouri, Columbia 65212.

Factors that lead to supersensitivity of vascular smooth muscle to norepinephrine during aldosterone-salt-induced hypertension in rats appear to reside beyond ligand-alpha-adrenergic receptor binding, which we have shown previously to be normal. The objective of this study was to determine whether significant shifts occur in the coupling between receptors and the production of putative second messengers. Measures of [3H]myo-inositol phosphates in aorta (endothelium removed) exhibited a concentration-dependent increase to norepinephrine, with the 50% response shifted significantly to the left in the hypertensive group (7.0 +/- 0.9 X 10(-7) M in 8 control rats vs 1.1 +/- 0.2 X 10(-7) M in 8 hypertensive rats; p less than 0.001). The production of [32P]phosphatidic acid was also shifted (6.5 +/- 2.5 X 10(-7) M in 16 control vs 1.9 +/- 0.8 X 10(-7) M in 12 hypertensive rats; p less than 0.05). The functional responses of 42K efflux and contraction to norepinephrine were also significantly shifted threefold to 15-fold in the hypertensive group (p less than 0.001), but the 50% response typically occurred at a 10 to 100 times lower concentration than that for the production of myo-inositol phosphates and phosphatidic acid. The amplification between receptor occupancy and functional responses apparently occurs beyond the production of phosphoinositide metabolites. The fivefold shift in the 50% response of biochemical end points for the hypertensive group accounted for most of the shift (sixfold) in the functional end points.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D006973 Hypertension Persistently high systemic arterial BLOOD PRESSURE. Based on multiple readings (BLOOD PRESSURE DETERMINATION), hypertension is currently defined as when SYSTOLIC PRESSURE is consistently greater than 140 mm Hg or when DIASTOLIC PRESSURE is consistently 90 mm Hg or more. Blood Pressure, High,Blood Pressures, High,High Blood Pressure,High Blood Pressures
D007295 Inositol Phosphates Phosphoric acid esters of inositol. They include mono- and polyphosphoric acid esters, with the exception of inositol hexaphosphate which is PHYTIC ACID. Inositol Phosphate,Phosphate, Inositol,Phosphates, Inositol
D008297 Male Males
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D010712 Phosphatidic Acids Fatty acid derivatives of glycerophosphates. They are composed of glycerol bound in ester linkage with 1 mole of phosphoric acid at the terminal 3-hydroxyl group and with 2 moles of fatty acids at the other two hydroxyl groups. Ammonium Phosphatidate,Diacylglycerophosphates,Phosphatidic Acid,Acid, Phosphatidic,Acids, Phosphatidic,Phosphatidate, Ammonium
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D011942 Receptors, Adrenergic, alpha One of the two major pharmacological subdivisions of adrenergic receptors that were originally defined by the relative potencies of various adrenergic compounds. The alpha receptors were initially described as excitatory receptors that post-junctionally stimulate SMOOTH MUSCLE contraction. However, further analysis has revealed a more complex picture involving several alpha receptor subtypes and their involvement in feedback regulation. Adrenergic alpha-Receptor,Adrenergic alpha-Receptors,Receptors, alpha-Adrenergic,alpha-Adrenergic Receptor,alpha-Adrenergic Receptors,Receptor, Adrenergic, alpha,Adrenergic alpha Receptor,Adrenergic alpha Receptors,Receptor, alpha-Adrenergic,Receptors, alpha Adrenergic,alpha Adrenergic Receptor,alpha Adrenergic Receptors,alpha-Receptor, Adrenergic,alpha-Receptors, Adrenergic

Related Publications

A W Jones, and B B Geisbuhler, and S D Shukla, and J M Smith
April 1986, The American journal of physiology,
A W Jones, and B B Geisbuhler, and S D Shukla, and J M Smith
February 1986, Journal of hypertension,
A W Jones, and B B Geisbuhler, and S D Shukla, and J M Smith
March 1977, The Journal of physiology,
A W Jones, and B B Geisbuhler, and S D Shukla, and J M Smith
December 1985, Japanese journal of pharmacology,
A W Jones, and B B Geisbuhler, and S D Shukla, and J M Smith
March 1978, The American journal of physiology,
A W Jones, and B B Geisbuhler, and S D Shukla, and J M Smith
August 2017, Journal of hypertension,
A W Jones, and B B Geisbuhler, and S D Shukla, and J M Smith
January 1993, The American journal of physiology,
A W Jones, and B B Geisbuhler, and S D Shukla, and J M Smith
November 1983, The Journal of pharmacology and experimental therapeutics,
A W Jones, and B B Geisbuhler, and S D Shukla, and J M Smith
September 1994, General pharmacology,
A W Jones, and B B Geisbuhler, and S D Shukla, and J M Smith
November 2001, Experimental physiology,
Copied contents to your clipboard!