Characterization of bradykinin-induced phosphoinositide turnover in neurohybrid NCB-20 cells. 1988

D M Chuang, and O Dillon-Carter
Laboratory of Preclinical Pharmacology, National Institute of Mental Health, St. Elizabeths Hospital, Washington, DC 20032.

Phosphoinositide hydrolysis was studied in neurohybrid NCB-20 cells prelabeled with myo-[3H]inositol. Among nearly 20 neurotransmitters and neuromodulators examined, only bradykinin, carbachol, and histamine significantly increased the accumulation of [3H]inositol monophosphate (IP1) in the presence of lithium. The EC50 of bradykinin was 20 nM and the saturating concentration was approximately 1 microM. The bradykinin response was robust (10-fold) and was potently and selectively blocked by a bradykinin antagonist, B 4881 [D-Arg-(Hyp3, Thi, D-Phe)-bradykinin], with a Ki of 10 nM. This effect of bradykinin appeared to be additive to that mediated by activation of muscarinic cholinergic and histamine H1 receptors. The accumulation induced by bradykinin or carbachol was dependent on the presence of calcium in the incubation medium; less than twofold stimulation was observed in the absence of exogenous calcium. Bradykinin-induced [3H]IP1 accumulation required high concentration of lithium to elicit its maximal stimulation; the concentration of lithium required for half maximal effect was about 13 mM, similar to the value reported previously for carbachol-induced accumulation in the same cell line. In contrast, using related neurohybrid NG108-15 cells, bradykinin-induced [3H]IP1 accumulation was found to require much less lithium. IN the presence of lithium, bradykinin also evoked a transient increase in the production of [3H]-inositol bis- and trisphosphate. Basal and bradykinin-induced phosphoinositide breakdown was inhibited by 4 beta-phorbol 12,13-dibutyrate, but was unaffected by the biologically inactive 4 beta-phorbol. Pretreatment of cells with pertussis toxin induced only about 30% loss of the bradykinin-induced [3H]IP1 accumulation, without affecting basal activity.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008094 Lithium An element in the alkali metals family. It has the atomic symbol Li, atomic number 3, and atomic weight [6.938; 6.997]. Salts of lithium are used in treating BIPOLAR DISORDER. Lithium-7,Lithium 7
D010703 Phorbol Esters Tumor-promoting compounds obtained from CROTON OIL (Croton tiglium). Some of these are used in cell biological experiments as activators of protein kinase C. Phorbol Diester,Phorbol Ester,Phorbol Diesters,Diester, Phorbol,Diesters, Phorbol,Ester, Phorbol,Esters, Phorbol
D010704 Phorbols The parent alcohol of the tumor promoting compounds from CROTON OIL (Croton tiglium). Tigliane,Tiglianes
D010716 Phosphatidylinositols Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to the hexahydroxy alcohol, myo-inositol. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid, myo-inositol, and 2 moles of fatty acids. Inositide Phospholipid,Inositol Phosphoglyceride,Inositol Phosphoglycerides,Inositol Phospholipid,Phosphoinositide,Phosphoinositides,PtdIns,Inositide Phospholipids,Inositol Phospholipids,Phosphatidyl Inositol,Phosphatidylinositol,Inositol, Phosphatidyl,Phosphoglyceride, Inositol,Phosphoglycerides, Inositol,Phospholipid, Inositide,Phospholipid, Inositol,Phospholipids, Inositide,Phospholipids, Inositol
D010738 Type C Phospholipases A subclass of phospholipases that hydrolyze the phosphoester bond found in the third position of GLYCEROPHOSPHOLIPIDS. Although the singular term phospholipase C specifically refers to an enzyme that catalyzes the hydrolysis of PHOSPHATIDYLCHOLINE (EC 3.1.4.3), it is commonly used in the literature to refer to broad variety of enzymes that specifically catalyze the hydrolysis of PHOSPHATIDYLINOSITOLS. Lecithinase C,Phospholipase C,Phospholipases, Type C,Phospholipases C
D001920 Bradykinin A nonapeptide messenger that is enzymatically produced from KALLIDIN in the blood where it is a potent but short-lived agent of arteriolar dilation and increased capillary permeability. Bradykinin is also released from MAST CELLS during asthma attacks, from gut walls as a gastrointestinal vasodilator, from damaged tissues as a pain signal, and may be a neurotransmitter. Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg,Bradykinin Acetate, (9-D-Arg)-Isomer,Bradykinin Diacetate,Bradykinin Hydrochloride,Bradykinin Triacetate,Bradykinin, (1-D-Arg)-Isomer,Bradykinin, (2-D-Pro)-Isomer,Bradykinin, (2-D-Pro-3-D-Pro-7-D-Pro)-Isomer,Bradykinin, (2-D-Pro-7-D-Pro)-Isomer,Bradykinin, (3-D-Pro)-Isomer,Bradykinin, (3-D-Pro-7-D-Pro)-Isomer,Bradykinin, (5-D-Phe)-Isomer,Bradykinin, (5-D-Phe-8-D-Phe)-Isomer,Bradykinin, (6-D-Ser)-Isomer,Bradykinin, (7-D-Pro)-Isomer,Bradykinin, (8-D-Phe)-Isomer,Bradykinin, (9-D-Arg)-Isomer,Arg Pro Pro Gly Phe Ser Pro Phe Arg
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004155 Diphenhydramine A histamine H1 antagonist used as an antiemetic, antitussive, for dermatoses and pruritus, for hypersensitivity reactions, as a hypnotic, an antiparkinson, and as an ingredient in common cold preparations. It has some undesired antimuscarinic and sedative effects. Benhydramin,Diphenylhydramin,2-Diphenylmethoxy-N,N-dimethylethylamine,Allerdryl,Benadryl,Benylin,Benzhydramine,Dimedrol,Diphenhydramine Citrate,Diphenhydramine Citrate (1:1),Diphenhydramine Hydrochloride,Diphenylhydramine,Dormin,Citrate, Diphenhydramine,Hydrochloride, Diphenhydramine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

D M Chuang, and O Dillon-Carter
January 1991, Neurochemistry international,
D M Chuang, and O Dillon-Carter
July 1987, Journal of neurochemistry,
D M Chuang, and O Dillon-Carter
September 1987, Cellular and molecular neurobiology,
D M Chuang, and O Dillon-Carter
July 1991, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism,
D M Chuang, and O Dillon-Carter
July 1992, Journal of neurochemistry,
Copied contents to your clipboard!