Circular ribosomal DNA plasmids transform Tetrahymena thermophila by homologous recombination with endogenous macronuclear ribosomal DNA. 1988

G L Yu, and M Hasson, and E H Blackburn
Department of Molecular Biology, University of California, Berkeley 94720.

We transformed the ciliate Tetrahymena thermophila by microinjection of circular plasmids containing the ribosomal RNA gene (rDNA). In the somatic macronucleus of Tetrahymena, the rDNA is in the form of linear palindromic molecules. The rDNA molecules from the C3 strain have a replication advantage over rDNA from both B strain and the C3 rDNA mutant rmm1. We constructed two circular plasmids carrying replication origin sequences from C3 rDNA and a point mutation (Pmr) in the 17S rRNA gene that confers resistance to the antibiotic paromomycin. One plasmid contained a single complete copy of the rRNA gene and its flanking sequences, while the other had an additional rDNA origin of replication. In all B or rmm1 Tetrahymena cell lines transformed with the plasmids, rDNA sequences from the plasmid were found in palindromic rDNA molecules. In one transformant line, a small amount of the plasmid was also retained in a form with the original circular restriction map. Our results show that the plasmids underwent homologous recombination with one arm of the endogenous rDNA to give heteropalindromic rDNA, or with both arms of the palindrome to form homopalindromic rDNA. The resulting recombinant molecules were able to replace the recipient's original rDNA completely, providing strong evidence that C3 rDNA sequences in the donor DNAs confer a replication advantage over recipient rDNA. Thus microinjection of circular plasmids provides a method for replacement of an endogenous gene or gene fragment with exogenous sequences.

UI MeSH Term Description Entries
D008845 Microinjections The injection of very small amounts of fluid, often with the aid of a microscope and microsyringes. Microinjection
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D010303 Paromomycin An aminoglycoside antibacterial and antiprotozoal agent produced by species of STREPTOMYCES. Aminosidine,Catenulin,Estomycin,Hydroxymycin,Neomycin E,Gabbromycin,Humatin,Paramomycin,Paromomycin I,Paromomycin Phosphate,Paromomycin Sulfate,Paromomycin Sulfate (1:1),Paromomycin Sulfate (2:5),Paromomycin, beta-D-Glucopyranosyl-Isomer,Paromomycin, beta D Glucopyranosyl Isomer,beta-D-Glucopyranosyl-Isomer Paromomycin
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D012091 Repetitive Sequences, Nucleic Acid Sequences of DNA or RNA that occur in multiple copies. There are several types: INTERSPERSED REPETITIVE SEQUENCES are copies of transposable elements (DNA TRANSPOSABLE ELEMENTS or RETROELEMENTS) dispersed throughout the genome. TERMINAL REPEAT SEQUENCES flank both ends of another sequence, for example, the long terminal repeats (LTRs) on RETROVIRUSES. Variations may be direct repeats, those occurring in the same direction, or inverted repeats, those opposite to each other in direction. TANDEM REPEAT SEQUENCES are copies which lie adjacent to each other, direct or inverted (INVERTED REPEAT SEQUENCES). DNA Repetitious Region,Direct Repeat,Genes, Selfish,Nucleic Acid Repetitive Sequences,Repetitive Region,Selfish DNA,Selfish Genes,DNA, Selfish,Repetitious Region, DNA,Repetitive Sequence,DNA Repetitious Regions,DNAs, Selfish,Direct Repeats,Gene, Selfish,Repeat, Direct,Repeats, Direct,Repetitious Regions, DNA,Repetitive Regions,Repetitive Sequences,Selfish DNAs,Selfish Gene
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA

Related Publications

G L Yu, and M Hasson, and E H Blackburn
March 1986, Molecular and cellular biology,
G L Yu, and M Hasson, and E H Blackburn
November 1989, Proceedings of the National Academy of Sciences of the United States of America,
G L Yu, and M Hasson, and E H Blackburn
July 1988, Proceedings of the National Academy of Sciences of the United States of America,
G L Yu, and M Hasson, and E H Blackburn
January 2024, Microbial genomics,
G L Yu, and M Hasson, and E H Blackburn
August 1985, Nucleic acids research,
G L Yu, and M Hasson, and E H Blackburn
September 1982, Developmental biology,
G L Yu, and M Hasson, and E H Blackburn
October 1978, Chromosoma,
G L Yu, and M Hasson, and E H Blackburn
December 1977, Science (New York, N.Y.),
G L Yu, and M Hasson, and E H Blackburn
June 1976, Journal of molecular biology,
G L Yu, and M Hasson, and E H Blackburn
August 1979, Genetical research,
Copied contents to your clipboard!