Characterization of the effects of Ca2+ on the intramitochondrial Ca2+-sensitive dehydrogenases within intact rat-kidney mitochondria. 1988

J G McCormack, and E S Bromidge, and N J Dawes
Department of Biochemistry, University of Leeds, U.K.

The regulatory properties of the Ca2+-sensitive intramitochondrial enzymes (pyruvate dehydrogenase phosphate phosphatase, NAD+-isocitrate dehydrogenase and 2-oxoglutarate dehydrogenase) in extracts of rat kidney mitochondria were found to be essentially similar to those described previously for other mammalian tissues; in particular each enzyme could be activated severalfold by Ca2+ with half-maximal effects (K0.5 values) of about 1 microM and effective ranges of approx. 0.1-10 microM Ca2+. In intact mitochondria prepared from whole rat kidneys incubated in a KCl-based medium containing respiratory substrates, the amount of active, nonphosphorylated pyruvate dehydrogenase could be increased severalfold by increases in extramitochondrial [Ca2+]; these effects could be blocked by ruthenium red. Similarly, Ca2+-dependent activations of NAD+-isocitrate dehydrogenase and 2-oxoglutarate dehydrogenase could be demonstrated in intact, fully coupled, rat kidney mitochondria by either following O2 uptake (in the presence of ADP) and NAD(P)H reduction (in the absence of ADP) on presentation of non-saturating concentrations of either threo-Ds-isocitrate or 2-oxoglutarate, respectively, under appropriate conditions, or for the latter enzyme only, also by following 14CO2 production from 2-oxo[1-14C]glutarate (in the absence or presence of ADP). Effects of Na+ (as a promoter of egress) and Mg2+ (as an inhibitor of uptake) on Ca2+-transport by rat kidney mitochondria could be readily demonstrated by assaying for the Ca2+-sensitive properties of the intramitochondrial Ca2+-sensitive dehydrogenases within intact rat kidney mitochondria. In the presence of physiological concentrations of Na+ (10 mM) and Mg2+ (2 mM), activation of the enzymes was achieved by increases in extramitochondrial [Ca2+] within the expected physiological range (0.05-5 microM) and with apparent K0.5 values in the approximate range of 300-500 nM. The implications of these results on the role of the Ca2+-transport system of kidney mitochondria are discussed.

UI MeSH Term Description Entries
D007521 Isocitrate Dehydrogenase An enzyme of the oxidoreductase class that catalyzes the conversion of isocitrate and NAD+ to yield 2-ketoglutarate, carbon dioxide, and NADH. It occurs in cell mitochondria. The enzyme requires Mg2+, Mn2+; it is activated by ADP, citrate, and Ca2+, and inhibited by NADH, NADPH, and ATP. The reaction is the key rate-limiting step of the citric acid (tricarboxylic) cycle. (From Dorland, 27th ed) (The NADP+ enzyme is EC 1.1.1.42.) EC 1.1.1.41. NAD Isocitrate Dehydrogenase,Isocitrate Dehydrogenase (NAD+),Isocitrate Dehydrogenase-I,Dehydrogenase, Isocitrate,Dehydrogenase, NAD Isocitrate,Isocitrate Dehydrogenase I,Isocitrate Dehydrogenase, NAD
D007655 Ketoglutarate Dehydrogenase Complex 2-Keto-4-Hydroxyglutarate Dehydrogenase,2-Oxoglutarate Dehydrogenase,2-Oxoglutarate Dehydrogenase Complex,Oxoglutarate Dehydrogenase,alpha-Ketoglutarate Dehydrogenase,alpha-Ketoglutarate Dehydrogenase Complex,2 Keto 4 Hydroxyglutarate Dehydrogenase,2 Oxoglutarate Dehydrogenase,2 Oxoglutarate Dehydrogenase Complex,Complex, 2-Oxoglutarate Dehydrogenase,Complex, Ketoglutarate Dehydrogenase,Complex, alpha-Ketoglutarate Dehydrogenase,Dehydrogenase Complex, 2-Oxoglutarate,Dehydrogenase Complex, Ketoglutarate,Dehydrogenase Complex, alpha-Ketoglutarate,Dehydrogenase, 2-Keto-4-Hydroxyglutarate,Dehydrogenase, 2-Oxoglutarate,Dehydrogenase, Oxoglutarate,Dehydrogenase, alpha-Ketoglutarate,alpha Ketoglutarate Dehydrogenase,alpha Ketoglutarate Dehydrogenase Complex
D007656 Ketoglutaric Acids A family of compounds containing an oxo group with the general structure of 1,5-pentanedioic acid. (From Lehninger, Principles of Biochemistry, 1982, p442) Oxoglutarates,2-Ketoglutarate,2-Ketoglutaric Acid,2-Oxoglutarate,2-Oxoglutaric Acid,Calcium Ketoglutarate,Calcium alpha-Ketoglutarate,Ketoglutaric Acid,Oxogluric Acid,alpha-Ketoglutarate,alpha-Ketoglutaric Acid,alpha-Ketoglutaric Acid, Calcium Salt (2:1),alpha-Ketoglutaric Acid, Diammonium Salt,alpha-Ketoglutaric Acid, Dipotassium Salt,alpha-Ketoglutaric Acid, Disodium Salt,alpha-Ketoglutaric Acid, Monopotassium Salt,alpha-Ketoglutaric Acid, Monosodium Salt,alpha-Ketoglutaric Acid, Potassium Salt,alpha-Ketoglutaric Acid, Sodium Salt,alpha-Oxoglutarate,2 Ketoglutarate,2 Ketoglutaric Acid,2 Oxoglutarate,2 Oxoglutaric Acid,Calcium alpha Ketoglutarate,alpha Ketoglutarate,alpha Ketoglutaric Acid,alpha Ketoglutaric Acid, Diammonium Salt,alpha Ketoglutaric Acid, Dipotassium Salt,alpha Ketoglutaric Acid, Disodium Salt,alpha Ketoglutaric Acid, Monopotassium Salt,alpha Ketoglutaric Acid, Monosodium Salt,alpha Ketoglutaric Acid, Potassium Salt,alpha Ketoglutaric Acid, Sodium Salt,alpha Oxoglutarate,alpha-Ketoglutarate, Calcium
D007658 Ketone Oxidoreductases Oxidoreductases that are specific for KETONES. Oxidoreductases, Ketone
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D008297 Male Males
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D009249 NADP Nicotinamide adenine dinucleotide phosphate. A coenzyme composed of ribosylnicotinamide 5'-phosphate (NMN) coupled by pyrophosphate linkage to the 5'-phosphate adenosine 2',5'-bisphosphate. It serves as an electron carrier in a number of reactions, being alternately oxidized (NADP+) and reduced (NADPH). (Dorland, 27th ed) Coenzyme II,Nicotinamide-Adenine Dinucleotide Phosphate,Triphosphopyridine Nucleotide,NADPH,Dinucleotide Phosphate, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide Phosphate,Nucleotide, Triphosphopyridine,Phosphate, Nicotinamide-Adenine Dinucleotide
D010749 Phosphoprotein Phosphatases A group of enzymes removing the SERINE- or THREONINE-bound phosphate groups from a wide range of phosphoproteins, including a number of enzymes which have been phosphorylated under the action of a kinase. (Enzyme Nomenclature, 1992) Phosphoprotein Phosphatase,Phosphoprotein Phosphohydrolase,Protein Phosphatase,Protein Phosphatases,Casein Phosphatase,Ecto-Phosphoprotein Phosphatase,Nuclear Protein Phosphatase,Phosphohistone Phosphatase,Phosphoprotein Phosphatase-2C,Phosphoseryl-Protein Phosphatase,Protein Phosphatase C,Protein Phosphatase C-I,Protein Phosphatase C-II,Protein Phosphatase H-II,Protein-Serine-Threonine Phosphatase,Protein-Threonine Phosphatase,Serine-Threonine Phosphatase,Threonine Phosphatase,Ecto Phosphoprotein Phosphatase,Phosphatase C, Protein,Phosphatase C-I, Protein,Phosphatase C-II, Protein,Phosphatase H-II, Protein,Phosphatase, Casein,Phosphatase, Ecto-Phosphoprotein,Phosphatase, Nuclear Protein,Phosphatase, Phosphohistone,Phosphatase, Phosphoprotein,Phosphatase, Phosphoseryl-Protein,Phosphatase, Protein,Phosphatase, Protein-Serine-Threonine,Phosphatase, Protein-Threonine,Phosphatase, Serine-Threonine,Phosphatase, Threonine,Phosphatase-2C, Phosphoprotein,Phosphatases, Phosphoprotein,Phosphatases, Protein,Phosphohydrolase, Phosphoprotein,Phosphoprotein Phosphatase 2C,Phosphoseryl Protein Phosphatase,Protein Phosphatase C I,Protein Phosphatase C II,Protein Phosphatase H II,Protein Phosphatase, Nuclear,Protein Serine Threonine Phosphatase,Protein Threonine Phosphatase,Serine Threonine Phosphatase

Related Publications

J G McCormack, and E S Bromidge, and N J Dawes
January 1988, Journal of cardiovascular pharmacology,
J G McCormack, and E S Bromidge, and N J Dawes
January 1985, Contributions to nephrology,
J G McCormack, and E S Bromidge, and N J Dawes
January 1973, Biochimica et biophysica acta,
J G McCormack, and E S Bromidge, and N J Dawes
November 1997, FEBS letters,
J G McCormack, and E S Bromidge, and N J Dawes
December 1986, Cell calcium,
J G McCormack, and E S Bromidge, and N J Dawes
November 1994, Biochemistry,
Copied contents to your clipboard!