Differential modulation of [3H]TCP binding to the NMDA receptor by L-glutamate and glycine. 1988

J Bénavidès, and J P Rivy, and C Carter, and B Scatton
Laboratories d'Etudes et de Recherches Synthélabo, Biochemical Pharmacology Group, Bagneux, France.

At equilibrium (4 h incubation), [3H]TCP (N-(1-[2-thienyl]-cyclohexyl)-3,4-[3H]piperidine) binding to well-washed rat forebrain membranes was enhanced in a concentration-dependent and 2-APV (2-amino-5-phosphonovaleric acid)-sensitive fashion by L-glutamate (EC50 = 0.2 microM; maximal effect +280%). L-glutamate (10 microM) increased the affinity of [3H]TCP from 78 to 28 nM, but was without effect on the maximal binding capacity. The enhancing effect of L-glutamate on [3H]TCP binding was potentiated by glycine in a concentration-dependent manner (EC50 = 50 nM, maximal effect +30% in the presence of 10 microM L-glutamate; EC50 = 2 microM, maximal effect +29% in the presence of 0.1 microM L-glutamate). This effect was strychnine-insensitive. Glycine failed to enhance [3H]TCP binding in the presence of 10 microM 2-APV. The glycine effect was due to an increase in affinity (Kd = 21 nM in the presence of 10 microM glycine and 10 microM L-glutamate); glycine did not affect the maximal binding capacity. The glycine enhancement of L-glutamate-stimulated [3H]TCP binding was not antagonised by 1 microM strychnine and was mimicked by L-serine and L-alanine but not by GABA, taurine or beta-alanine. Kinetic analysis of the glycine and L-glutamate enhancement of [3H]TCP binding indicated that the L-glutamate effect was related to a decrease in the [3H]TCP dissociation rate while the glycine effect was due to an increase in the rate of [3H]TCP association in the presence of L-glutamate.

UI MeSH Term Description Entries
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D001923 Brain Chemistry Changes in the amounts of various chemicals (neurotransmitters, receptors, enzymes, and other metabolites) specific to the area of the central nervous system contained within the head. These are monitored over time, during sensory stimulation, or under different disease states. Chemistry, Brain,Brain Chemistries,Chemistries, Brain
D005971 Glutamates Derivatives of GLUTAMIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the 2-aminopentanedioic acid structure. Glutamic Acid Derivatives,Glutamic Acids,Glutaminic Acids
D005998 Glycine A non-essential amino acid. It is found primarily in gelatin and silk fibroin and used therapeutically as a nutrient. It is also a fast inhibitory neurotransmitter. Aminoacetic Acid,Glycine, Monopotassium Salt,Glycine Carbonate (1:1), Monosodium Salt,Glycine Carbonate (2:1), Monolithium Salt,Glycine Carbonate (2:1), Monopotassium Salt,Glycine Carbonate (2:1), Monosodium Salt,Glycine Hydrochloride,Glycine Hydrochloride (2:1),Glycine Phosphate,Glycine Phosphate (1:1),Glycine Sulfate (3:1),Glycine, Calcium Salt,Glycine, Calcium Salt (2:1),Glycine, Cobalt Salt,Glycine, Copper Salt,Glycine, Monoammonium Salt,Glycine, Monosodium Salt,Glycine, Sodium Hydrogen Carbonate,Acid, Aminoacetic,Calcium Salt Glycine,Cobalt Salt Glycine,Copper Salt Glycine,Hydrochloride, Glycine,Monoammonium Salt Glycine,Monopotassium Salt Glycine,Monosodium Salt Glycine,Phosphate, Glycine,Salt Glycine, Monoammonium,Salt Glycine, Monopotassium,Salt Glycine, Monosodium
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013876 Thiophenes A monocyclic heteroarene furan in which the oxygen atom is replaced by a sulfur. Thiophene
D016194 Receptors, N-Methyl-D-Aspartate A class of ionotropic glutamate receptors characterized by affinity for N-methyl-D-aspartate. NMDA receptors have an allosteric binding site for glycine which must be occupied for the channel to open efficiently and a site within the channel itself to which magnesium ions bind in a voltage-dependent manner. The positive voltage dependence of channel conductance and the high permeability of the conducting channel to calcium ions (as well as to monovalent cations) are important in excitotoxicity and neuronal plasticity. N-Methyl-D-Aspartate Receptor,N-Methyl-D-Aspartate Receptors,NMDA Receptor,NMDA Receptor-Ionophore Complex,NMDA Receptors,Receptors, NMDA,N-Methylaspartate Receptors,Receptors, N-Methylaspartate,N Methyl D Aspartate Receptor,N Methyl D Aspartate Receptors,N Methylaspartate Receptors,NMDA Receptor Ionophore Complex,Receptor, N-Methyl-D-Aspartate,Receptor, NMDA,Receptors, N Methyl D Aspartate,Receptors, N Methylaspartate
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D017981 Receptors, Neurotransmitter Cell surface receptors that bind signalling molecules released by neurons and convert these signals into intracellular changes influencing the behavior of cells. Neurotransmitter is used here in its most general sense, including not only messengers that act to regulate ion channels, but also those which act on second messenger systems and those which may act at a distance from their release sites. Included are receptors for neuromodulators, neuroregulators, neuromediators, and neurohumors, whether or not located at synapses. Neurohumor Receptors,Neuromediator Receptors,Neuromodulator Receptors,Neuroregulator Receptors,Receptors, Neurohumor,Receptors, Synaptic,Synaptic Receptor,Synaptic Receptors,Neuromediator Receptor,Neuromodulator Receptor,Neuroregulator Receptor,Neurotransmitter Receptor,Receptors, Neuromediators,Receptors, Neuromodulators,Receptors, Neuroregulators,Receptors, Neurotransmitters,Neuromediators Receptors,Neuromodulators Receptors,Neuroregulators Receptors,Neurotransmitter Receptors,Neurotransmitters Receptors,Receptor, Neuromediator,Receptor, Neuromodulator,Receptor, Neuroregulator,Receptor, Neurotransmitter,Receptor, Synaptic,Receptors, Neuromediator,Receptors, Neuromodulator,Receptors, Neuroregulator
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

J Bénavidès, and J P Rivy, and C Carter, and B Scatton
January 1990, European journal of pharmacology,
J Bénavidès, and J P Rivy, and C Carter, and B Scatton
October 1989, European journal of pharmacology,
J Bénavidès, and J P Rivy, and C Carter, and B Scatton
May 1991, Synapse (New York, N.Y.),
J Bénavidès, and J P Rivy, and C Carter, and B Scatton
July 2018, Structure (London, England : 1993),
J Bénavidès, and J P Rivy, and C Carter, and B Scatton
April 1990, Biochemistry,
J Bénavidès, and J P Rivy, and C Carter, and B Scatton
January 1989, Neuropharmacology,
J Bénavidès, and J P Rivy, and C Carter, and B Scatton
August 1994, Journal of the neurological sciences,
J Bénavidès, and J P Rivy, and C Carter, and B Scatton
September 1988, Journal of neurochemistry,
J Bénavidès, and J P Rivy, and C Carter, and B Scatton
January 1994, European journal of pharmacology,
Copied contents to your clipboard!